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Abstract—The use of accelerators in high-performance com-
puting is increasing. The most commonly used accelerator is
the graphics processing unit (GPU) because of its low cost
and massively parallel performance. The two most common
programming environments for GPU accelerators are CUDA and
OpenCL. While CUDA runs natively only on NVIDIA GPUs,
OpenCL is an open standard that can run on a variety of
hardware processing platforms, including NVIDIA GPUs, AMD
GPUs, and Intel or AMD CPUs.

Given the abundance of GPU applications written in CUDA,
we seek to leverage this investment in CUDA and enable CUDA
programs to “run anywhere” via a CUDA-to-OpenCL source-
to-source translator. The resultant OpenCL versions permit the
GPU-accelerated codes to run on a wider variety of processors
that would not otherwise be possible. However, robust source-
to-source translation from CUDA to OpenCL faces a myriad of
challenges. As such, this paper identifies those challenges and
presents a classification of CUDA language idioms that present
practical impediments to automatic translation.

I. INTRODUCTION

The use of diverse multi- and many-core devices for accel-
erated performance has grown to become a key technique in
developing high-performance computing (HPC) applications.
GPUs have been at the forefront of this recent growth, in large
part due to the success of NVIDIA’s CUDA environment, and
more recently, OpenCL, both of which aim to ease the general-
purpose programming of GPUs. However, while the APIs are
similar in many respects, the CUDA environment is available
only to NVIDIA GPU devices, whereas the OpenCL standard
may be implemented to run on any vendor’s hardware, such
as traditional CPUs, and GPUs. OpenCL’s code portability
provides both developers and users with a standard interface
for extracting parallel performance from diverse hardware
resources.

Due to the large number of early adopters of CUDA, as
well as its approximately 18-month head start over OpenCL,
a considerable body of CUDA code has already amassed,
representing many person-hours of development. However,
despite having similar APIs and functionality, there is no
simple one-to-one mapping for all operations. Furthermore,
each provides some degree of exclusive functionality. Thus,
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porting applications between the two languages remains a non-
trivial endeavor, requiring considerable programmer time and
effort and being prone to introducing translation errors.

This paper presents insights needed for successful CUDA
to OpenCL translation, gained from experiences profiling a
diverse population of typical CUDA applications. Specifically,
we present a taxonomy of several generalized CUDA language
idioms that are currently barriers to automation. We further
classify these idioms based on their relative translatability to
drive reasoning about potential methods for their implementa-
tion in OpenCL.

After providing background information, including related
work as well as a high-level overview of both the CUDA and
OpenCL APIs, we briefly discuss the prototype translator used
to help identify language constructs of interest in this paper.
Next, we focus on a discussion and evaluation of the core
contributions of the work, namely, a characterization of the
challenges for fully-automated translation, which includes

• A generalized classification of significant untranslated
language idioms.

• Generalized solution mechanisms for mistranslations ob-
served in the prototype translator.

• Conceptual foundations for solutions to more significant
translation impediments.

Finally, we conclude by presenting opportunities for future
development of automatic CUDA-to-OpenCL translators and
drawing general conclusions on the applicability of our work.

II. BACKGROUND

As previously noted, CUDA and OpenCL both provide
frameworks for performing general-purpose GPU (GPGPU)
computations with a number of remarkable similarities. First,
both provide the abstraction of an accelerator device —
NVIDIA GPUs for CUDA and any device with a supporting
implementation for OpenCL — that is used for the execution
of parallel kernel code. Further, both share similar threading
and memory models and a similar kernel language. However,
due to their differing emphases — proprietary GPUs vs. multi-
vendor compatibility on general parallel computing devices
— enough differences exist between CUDA and OpenCL that
pose significant challenges towards realizing a robust CUDA-
to-OpenCL source-to-source translator.



A. Related Work

There exist a number of related efforts to automatically
translate software either to or from the CUDA framework.
The parallel performance afforded by GPUs has created a
demand for programming models and tools which simplify
the development of GPU-accelerated software.

A popular approach to providing software portability is the
use of a lower-level intermediate representation (IR) between
high-level source and architecture-specific binary. Ocelot is
a compilation framework that translates CUDA’s PTX IR
to x86 CPU code via the LLVM framework [1]. Ocelot
can dynamically execute CUDA applications on both GPUs
and CPUs without recompiling [2]. However, this approach
requires that a separate backend be developed for each target
IR, such as Caracal, a PTX-to-CAL runtime environment for
execution of CUDA code on AMD GPUs [3].

Portability can also be provided through the insertion of
an additional abstraction layer between the developer and the
GPU programming framework. This is the approach taken
by Swan, a tool for switching between CUDA and OpenCL.
Applications written to use the Swan API in place of the
CUDA API are compiled for either CUDA or OpenCL simply
by changing the tool’s build target and compiling against
the respective Swan library [4]. However, this approach still
requires manual translation from CUDA code to Swan’s API.

The shared memory programming (SMP) model has seen
widespread use in the development of parallel applications.
OpenMP is a popular open standard for implementing the SMP
model, and there are efforts underway to translate OpenMP
to and from CUDA. One such effort, known as OpenMPC,
has demonstrated an extension to OpenMP, which provides
autonomous compilation and tuning of CUDA executables
from OpenMP source code [5][6].

A separate effort, underway at the University of Illinois
at Urbana-Champaign (UIUC), implements the CUDA pro-
gramming model on multi-core CPUs. This framework, known
as MCUDA, has demonstrated techniques for performing
automatic transformation and tuning of an abstract syntax tree
(AST) from CUDA to OpenMP [7].

Another project at UIUC, CUDAtoOpenCL [8], implements
a modified preprocessor and AST IR, allowing parsing of
CUDA source. Transformations on the AST for generating
host and device code are performed in separate phases. A
recursion-based mechanism for propagating translations to
OpenCL data types has been demonstrated. However, some
features are said to be unsupported. In addition, its source
code has not been released, and as such, cannot be com-
pared directly to our translator, CU2CL. We note that both
CUDAtoOpenCL and CU2CL have recursion-based expres-
sion rewriting, propagation of the cl mem type, and support
for the most commonly-used environment setup, memory
management, and kernel launch functions [8] [9].

B. CUDA

NVIDIA’s CUDA has been at the forefront of GPGPU
development since its initial release in 2006 and has recently

reached its fourth major revision. At its heart, CUDA is
designed to allow programmers easier access to the raw
computational performance of NVIDIA’s GPU architectures
without the need to transform algorithms in order to use
graphics APIs as was previously the case. While primarily
a programming framework, CUDA provides a complete en-
vironment for the development of GPGPU applications via a
combination of extensions to the C language (CUDA C), a
corresponding compiler and visual profiler, and both a high-
level runtime API and a lower-level driver API.

CUDA’s primary compute functionality is achieved through
host-side enqueuing of kernel functions, which are then exe-
cuted on the GPU device asynchronously by the CUDA run-
time [10]. This queue can be user configured to launch kernels
and complete memory transfers either in strictly sequential
order or an arbitrary order. An additional level of explicit
synchronization is available through the use of user-defined
events. The kernel launch model provides a hierarchical or-
ganization of device threads, consisting of a one- to three-
dimensional grid of thread blocks, each of which represents
a one- or two-dimensional subdomain of the grid space. At
each kernel launch, both the grid and block dimensions must
be declared in order to partition the workload to available
streaming multiprocessors. Figure 1a provides a summary of
this execution model.

CUDA utilizes a hierarchical memory model distributed
across both host and device. As of the CUDA 4.0 release,
it also provides a uniform address space [10]. Device memory
is partitioned into several distinct units, which conceptually,
function much like the tiers of a cache albeit with relaxed
consistency. (In fact, NVIDIA GPUs with compute capability
2.0 or higher provide an adjustable L1 cache.)

Global memory makes up the vast majority of GPU memory
space; it is accessible from both the host and GPU and allows
for data communication to and from the GPU. In addition
to this bulk global memory, texture and constant regions are
provided but are somewhat limited due to their small size, the
read-only nature of constant memory, and the need for special-
purpose functions to access texture data. Shared memory is on-
chip and significantly faster, but it is far smaller and access is
restricted to only threads that reside in the same block. Finally,
GPU registers, similar to their CPU counterparts, are few in
number and only accessible by the owning thread, but are the
fastest by far. An overview of this memory model is provided
in Figure 1b.

C. OpenCL

OpenCL was first devised by Apple in an attempt to avoid
being restricted to any given hardware vendor’s proprietary
API. It has since been transferred to the Khronos Group to
steward as an open standard for heterogeneous computing [11].
OpenCL provides a mechanism through which parallel ap-
plications can be developed for diverse accelerator hardware,
without the need for time-intensive manual adaptation.

Conceptually, OpenCL provides a threading model similar
to CUDA’s that allows the software designer to abstract away
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Fig. 1. CUDA and OpenCL Kernel Execution and Memory Models

all but the most critical considerations of the underlying
architecture and express parallelism in terms of a large ND
Range. This grouping of the device’s thread hierarchy repre-
sents a direct one-to-one mapping to CUDA’s grid. In addition,
OpenCL uses the terms work-group and work-item in place of
CUDA’s blocks and threads, respectively.

OpenCL’s memory hierarchy is another area of similarity.
Global and constant memories are effectively unchanged.
CUDA’s shared memory is referred to as local memory in
OpenCL and is specific to a work-group. CUDA registers are
referred to as private memory in OpenCL which is specific to
a given work-item. Figures 1a and 1b show these CUDA-to-
OpenCL mappings.

III. TRANSLATOR PROTOTYPE

Much of the results presented in this paper were enabled by
our prototype source-to-source translator, known as CU2CL
(i.e., CUDA-to-OpenCL). While a full discussion of CU2CL’s
implementation is outside the scope of this paper, we provide
a brief introduction to its high-level construction as context.
A more detailed exposition is available in [9].

CU2CL is built on the Clang compiler framework [12], a
strategic choice based on its extensible, library-based con-
struction, as well as its built-in CUDA parser. By building
the translator within this framework, the vast majority of core
functionality could be implemented by the clever composition
of pre-existing functionality, requiring only that a new plugin
be written to provide a new recursive descent AST walker as
well as the actual CUDA-to-OpenCL rewriting process.

CU2CL is “AST-driven and string-based” [9] and relies on
Clang for parsing and generation of an AST, which is then
used by CU2CL to identify sections of interest for translation.
However, contrary to many translation efforts, the resultant
source code is not derived strictly from the translated AST. In-
stead, string insertions and replacements are performed within
a local context. This ensures that meta-content embedded in
the source, such as commenting and formatting, is nearly

completely preserved in the resulting OpenCL output. This
is a definite boon to the use, extension, and maintenance
of automatically translated code. Further, [9] has provided
an early analysis of the CU2CL prototype, demonstrating
that automatically translated code offers performance on par
with hand-translated versions when executed on the same
underlying CUDA device.

IV. APPROACH

As a preliminary step towards the future development of
CUDA-to-OpenCL translators, including the extension of our
CU2CL prototype, we have undertaken a study of sample
CUDA applications in search of software idioms that provide
fundamental impediments to translation. As a byproduct, we
also discovered a small number of CU2CL idiosyncrasies.

In order to encompass a significant majority of the full
diversity of the CUDA language, we directed our attention
towards 79 sample applications provided along with the CUDA
SDK [13], as well as 17 from the Rodinia suite of parallel
applications [14]. The SDK samples were chosen for their
considerable breadth of coverage, whereas the Rodinia suite
was chosen as representative of CUDA usage in practice.
Rodinia also conveniently provides availability of manually
translated applications for future comparison.

We began by subjecting each of the sample applications
to a raw ”first-pass” translation by CU2CL and examining
the generated source artifacts from the original CUDA and
the emitted errors for distinctive patterns. Upon analysis, we
saw the emergence of distinct idioms that arose consistently
across multiple applications. By profiling the population of
sample applications for ”markers” of these idioms – specific
data types, function calls, and header files – we developed an
understanding of the scope and breadth of these idioms as well
as insight into solutions for realizing a more robust translator.
Additionally, we manually removed code sections that were
associated with translation failures in affected applications and
then subjected these applications to additional passes through



the CU2CL prototype in order to attempt partial translation of
the remaining source.

Out of this process emerged three general classes of lan-
guage idioms: (1) fundamentally untranslatable idioms, (2)
difficult-to-translate idioms, and (3) CU2CL-specific trans-
lation idioms. Additionally we note the largely language-
agnostic challenge of providing cohesive translation across
multiple source files which are compiled separately as disjoint
objects underlying a larger application.

Table I presents an overarching summary of the frequency
of these challenges within the sample populations. We discuss
these in depth in Section V.

TABLE I
CUDA-TO-OPENCL TRANSLATION CHALLENGES AND FREQUENCY OF

AFFECTED APPLICATIONS

Challenge CUDA SDK Rodinia
Frequency (%) Frequency (%)

Separate Compilation 54.4 35.3
Untranslatable Idioms
- CUDA Libraries 17.7 0
- PTX 7.6 0
- Kernel Templates 7.6 0
Difficult-to-Translate Idioms
- Device Identifiers 77.2 0
- Static Constant Buffers 19.0 5.9
- Textures 32.9 23.5
- Graphics Interoperability 24.1 0
- CUDA Driver API 8.9 5.9
CU2CL-Specific Idioms
- Kernel Literal Arguments 20.2 17.6
- Aligned Types 6.3 5.9
Miscellaneous Idioms
- Surfaces 7.6 0
- K&R Style Declarations 0 5.9
- False System Includes 0 19.4

V. CHALLENGES

A. Separate Compilation

Separate compilation of CUDA applications from multiple
source files is a challenge that is not necessarily specific to
translation from CUDA to OpenCL. Rather, it is specific to
source translation, which occurs at a file scope on languages
or runtimes that have global state – such as the CUDA
runtime API. Fundamentally, a source-to-source translator
which operates on single source file at a time must propagate
source rewrites to other software components which may not
be integrated until the linking phase of compilation. This
represents a significant challenge to any translator’s ability to
provide robust translation of real-world applications, as sepa-
rate compilation plays a key role in the modular construction
of full-scale applications.

This issue is highly relevant to CUDA-to-OpenCL trans-
lation as OpenCL requires significantly more initialization
”boilerplate” code than the CUDA Runtime API. (In this
regard, OpenCL is similar to the CUDA Driver API.) It
requires a priori knowledge of the specific accelerator kernels
that will be utilized by the application. However, we have
observed that these commonly reside in source files separate
from those containing main methods, and without explicit

linking or manual intervention, it becomes a significant chal-
lenge for an automatic translator to ensure that the appropriate
initialization has occurred. Doing so introduces the complexity
of maintaining some state across translator executions.

As an example of this challenge, our prototype currently
inserts initialization code into the main method for all CUDA
kernels that share the same effective file scope (after pre-
processing of includes), but only provides partial translation
without initialization in other cases. Through clever usage of
include directives, it is relatively easy to force full translation
of many of these applications by giving CU2CL the appear-
ance of operating on a single source, but this introduces an
additional manual preprocessing step as well as obviating other
potential benefits provided by modular, separate compilation.
We find this to be an imperfect solution in the long term
and are currently working to develop a robust mechanism
for collecting necessary boilerplate across multiple, separately
translated source files and deferring insertion of initialization
and deconstruction shims into the main method when the
containing code module is translated.

B. Fundamentally Untranslatable Idioms

Among the insights produced by our profiling were several
CUDA syntax constructs and GPU programming practices that
simply lie outside the practical scope of CUDA-to-OpenCL
translation. We present three such idioms, which can be
recognized, but not automatically translated at the present time
for reasons stated below.

1) CUDA Libraries: The very nature of source-to-source
translation restricts the ability to translate applications that
make use of non-source components. In practice, this is pri-
marily encountered in the use of third-party libraries that make
internal use of the CUDA API to provide GPU-accelerated
implementations of commonly used functions. In our analysis,
we found instances of five such libraries: Boost, CUDPP,
CUFFT, CUBLAS, and CURAND, which together appeared
in 14 of the 79 samples taken from the CUDA SDK. It
is relatively easy to identify applications that make use of
these libraries by searching for their header files and function
calls. However, without available CUDA source or equivalent
OpenCL libraries, these calls will remain effectively outside
the reach of a translator. As equivalent OpenCL libraries are
developed, translation then becomes relatively straightforward.
However, due to the presence of such libraries in real code, it
must be gracefully handled by automatic translation efforts in
the mean time, primarily by noting their presence via an error
message.

2) PTX: Another less prevalent variant of the non-source
component problem that we identified is the use of NVIDIA’s
PTX IR for distribution of highly-targeted device kernels
within software projects. Due to OpenCL’s abstractions around
compute devices and the myriad of potential underlying imple-
mentations necessary to accommodate all supported OpenCL
devices, translation would require deep analysis of the PTX
source to construct equivalent OpenCL source; essentially a
form of decompiling. This would require the use of an entirely



new front-end parser solely for constructing abstract meaning
from highly device-tuned low-level operations. Further, the
compilation of PTX requires usage of the CUDA Driver API,
which is not currently supported by any CUDA-to-OpenCL
translator.

3) Kernel Templates: Finally, the third idiom that lies
largely outside the reach of CUDA-to-OpenCL translators is
the ability to use C++ object-oriented constructs within CUDA
device kernels. We recognize that this does not fundamentally
present a class of untranslatable constructs as C++ objects
are themselves implemented through simpler mechanisms, but
such translation would effectively require their reimplementa-
tion at the present time. These represent a current language
barrier solely due to OpenCL’s continued reliance on purely
C99 constructs within device code. Should future versions of
the OpenCL standard allow for the inclusion of C++ object-
oriented constructs such as templates within device code, then
their automatic translation would be more readily achieved.

C. Difficult-to-Translate Idioms

This class of idioms represents those for which complete
or near-complete functional equivalence can be realized in an
automatic translator, but for which direct one-to-one mappings
either do not exist or fail to ensure coverage of the full
expressivity of the CUDA API. We demonstrate two cases of
expressivity limitations – device IDs and statically allocated
constant buffers – and three cases of functional equivalence re-
quiring more elaborate syntax adaptations – textures, OpenGL
interoperability, and the CUDA Driver API. The two cases of
expressivity limitations demonstrate situations in which there
exists a one-to-one mapping of CUDA-to-OpenCL behavior,
but for which CUDA offers additional syntax and functionality
variants that are less directly realized within OpenCL. The
three remaining cases represent sections of the APIs that
provide essentially equivalent functionality but with vastly
differing syntax.

1) Device IDs: The single most common idiom that we
observed within the sample of applications was the initializa-
tion of a CUDA device from a simple integer ID. The CUDA
Runtime API provides a mechanism for selecting a specific
CUDA-capable device from among the multiple devices which
may be present in a system. However, the explicit call is rarely
used due to the convenience of auto-initialization of a default
device by the runtime when the first CUDA call is performed.

Currently, CU2CL assumes a similar auto-initialization be-
havior and simply chooses the default zeroth GPU device
returned by the OpenCL runtime. However, for any translator
to effectively emulate the optional functionality of choosing a
device based on its integer index among all compute devices
in a system, it must provide an OpenCL device initialization
mechanism to create a structure which consists of all valid
OpenCL devices and use the integer index to then make a
distinction between them. Figure 2 in Section VII demonstrates
OpenCL code that would effectively achieve this functionality.

2) Statically Allocated Constant Buffers: CUDA allows
device-side constant memory buffers to be declared as static

constant arrays using a variant on the C syntax for stack-
allocated arrays. While OpenCL does not provide an equiva-
lent method for the declaration of statically defined constant
memory regions, translation of such a declaration to make use
of the proper clCreateBuffer syntax could be easily added.
However, the subtle difficulty presented by this idiom is
OpenCL’s need for constant buffers to be explicitly specified
as kernel arguments. Proper detection and insertion of these
additional arguments in only the relevant kernels will require
a disciplined approach to identifying usage of such buffers
within individual kernel functions.

3) Textures: The next idiom that we identified and that can
potentially be implemented via functional equivalency is the
mapping of CUDA textures to OpenCL images. Fundamen-
tally, both provide access to special-purpose regions of a GPU
device that allow for efficient access to data through image-
centric addressing modes. However, CUDA and OpenCL
present differing APIs for handling such data, requiring more
significant changes than simple one-to-one mappings. Further,
CUDA’s one-dimensional texture type has no direct analog
within the OpenCL specification before version 1.2 [11] and
requires intelligent mapping of the one-dimensional texture
onto a two-dimensional OpenCL image. This idiom was first
noticed in two unpublished sample kernels that were provided
by an industrial collaborator and reinforced within 26 of the
CUDA SDK samples as well as four of the Rodinia applica-
tions. Work is still ongoing to create generalized mechanisms
for performing texture-to-image mappings (via experimental
manual translations of affected applications).

4) OpenGL Interoperability: Both CUDA and OpenCL
provide mechanisms for directly interoperating with OpenGL
objects that share data with compute kernels. These are primar-
ily of interest for in-situ visualization of computations without
the need for excess data movement to and from the CPU as an
intermediate step between computation and rendering. (While
CUDA textures may be considered to loosely fall under this
umbrella, their usage in practice has been observed to fre-
quently be completely agnostic to other graphics interopability,
and as such, have been presented as a distinct idiom.)

5) CUDA Driver API: CUDA provides access to this low-
level driver API that allows programmers more explicit control
over the execution of software on CUDA devices. There are
many parallels between CUDA’s Driver API and OpenCL’s
specification, particularly the dramatically increased explicit-
ness required to manage a compute device within the Driver
API over the high-level CUDA Runtime API. Currently, no
translator makes any attempt to translate constructs from the
CUDA driver API. Based on the limited usage that we have
observed (only seven CUDA samples and one Rodinia sample)
as well as the drastically increased difficulty of programming
with the CUDA Driver API, we place this at a low priority
for our translator.

D. CU2CL-specific Idioms

The final set of idioms encompasses translated constructs
that emit invalid OpenCL source under specific conditions due



to assumptions or oversights in the translator prototype, but
require only relatively small additions to be supported. We
stress that the implementation of solutions for these issues will
improve the already high effective coverage of the translator
and bring additional clarity to the search for as yet unidentified
idioms by removal of excess noise.

1) Aligned Types: The only example of a simple one-to-
one mapping that was not translated was alignment attributes.
Both OpenCL and CUDA support explicit specification of data
structure alignment in order to ensure a consistent memory
layout on structures passed between host and device. However,
our examination of CUDA source and OpenCL output revealed
(and inspection of the prototype source later corroborated)
that CUDA’s align(n) construct was not being translated to
OpenCL’s attribute ((aligned (n))) construct. We encountered
this construct in only five of the CUDA samples and only a
single Rodinia application. However, we anecdotally note that
the relevance of this issue is likely greater than indicated by
our study due to the utility afforded by structurally organized
memory.

2) Kernel Literal Arguments: Another potential translation
pitfall that we have identified, which is typical of subtle
assumptions made about incoming CUDA syntax, is the use of
literal arguments to CUDA kernels. Within CUDA, arguments
to device-side compute kernels are specified using pass-by-
value semantics, as opposed to OpenCL’s pass-by-reference
mechanism of specifying kernel arguments. Currently, the
prototype assumes every value passed to a compute kernel
is stored in a specific variable (i.e., memory address) and
simply translates variable names into appropriate pointer ref-
erences. However, in the case of literal arguments – numerical
constants, macro evaluations, and other inline mathematical
operations – there is often no variable in the application source
that ever contains the result of the expression. Further, the
string replacement method of performing pointer translation
results in mangled forms of the expression in the resultant
OpenCL source. While this fundamentally represents a func-
tional equivalency similar to those in Subsection V-C, an
appropriate emulation can be rather directly achieved.

E. Miscellaneous and Unclassified Constructs

In addition to the well-defined idioms mentioned in the
previous three subsections, we have identified additional con-
structs that present barriers to translation, but that are still
being studied for generalizable patterns, as well as potential
translatability before classification. These remaining constructs
are all currently undergoing preliminary analysis to determine
their membership into extant or new classifications.

The final subset of language constructs that we have iden-
tified, but not yet classified, consists of those which were
exposed only in a small subset of the population or during late-
stage passes by the prototype after earlier-identified untrans-
latable constructs had been manually removed from source
samples. We are currently in the process of examining CUDA
source, automatically translated OpenCL, and CU2CL’s source
itself to develop a similar understanding of these constructs.

First, the CUDA SDK samples provided several applications
that make use of CUDA’s surface data type, which is closely
related to the texture type. However, before the release of the
OpenCL 1.2 standard, there existed no relatively analogous
type. It is not yet clear if OpenCL’s recently introduced surface
types offer full functional equivalence to CUDA’s.

Second, a number of the samples taken from the Rodinia
benchmarks suite use system-style preprocessor syntax for
includes rather than user-space include syntax to reference
relevant project header files. While this does not inhibit
the prototype from translating the included files, the default
behavior for rewriting the system-style include statement is
to assume no rewrite occurred within the header and maintain
the untranslated reference.

Finally, the Rodinia suite contains a single application,
Backprop, which contains function declarations that enumerate
arguments in K&R style that cause translation failure. We are
still in the process of determining if this is a limitation of
Clang’s CUDA parser or the CU2CL translator library.

VI. CONTRIBUTION

The GPGPU community has expressed great interest in
translation from CUDA to OpenCL. While CUDA provides
access to high raw computation performance, it is limited in
its general applicability due its exclusivity to NVIDIA hard-
ware, whereas OpenCL provides access to high performance
computation on NVIDIA devices as well as those from other
vendors. Primarily, the boon of OpenCL driving the desire
for translation is functional portability. By converting existing
codebases to OpenCL, the cost of developing software that is
compatible with a multitude of underlying compute devices
is drastically reduced. Further, OpenCL codebases are future-
ready as existing code will be capable of executing on any
future device that implements an OpenCL runtime.

Therefore, the primary relevance of this work is a contri-
bution to the general knowledge of CUDA-to-OpenCL trans-
lation. We have drawn attention to a number of fundamental
issues encountered when translating from CUDA to OpenCL.
Further, where possible, we have worked to generalize the
language idioms that we have encountered to reduce reliance
on single-use, application-specific mappings of language con-
structs. This serves to facilitate a dialog on general methods
for Affecting translations of CUDA to OpenCL. Thus, these
insights provide benefits to both manual and automated trans-
lation efforts.

VII. FUTURE WORK

Based on the increased understanding of the nuances of
CUDA-to-OpenCL translation, we can now target future devel-
opment of our prototype to achieve the most rapid useful gains.
Further, we have already begun reasoning about solutions to
many of these idioms, which gives a substantial boost to
their implementation. We have chosen to direct our immediate
development efforts towards the following three areas.



1) Support for Separate Compilation: Support for separate
compilation is a necessity for CU2CL to be considered a
production-ready tool. Therefore, we have elected to devote
much of our immediate effort towards generating and imple-
menting a robust solution to this problem. We have already
constructed several potential mechanisms for achieving this
functionality. One such mechanism requires the generation
of a small separate file into which the translator would
progressively add various OpenCL initialization calls as they
are identified in the individual CUDA source files in order to
assemble unified initialization and finalization functions. Once
a source file containing a main function is read, corresponding
calls to initialization and finalization functions will be inserted.
However, we are still in the process of generating other
potential options and evaluating their respective merits.

2) Robust Error Reporting: The handling of untranslat-
able constructs presents a definite area of improvement for
the translator. Currently only a small subset of unsupported
CUDA operations emit intelligible errors during translation,
but even in these cases, the error messages do not effectively
direct programmer attention for manual translation. Further, a
number of yet-to-be-supported constructs, including templates,
library usage, and separate compilation originally resulted in
segmentation faults without providing an indication as to the
cause. We have implemented modifications to recognize and
avoid such constructs, eliminating the majority of observed
segmentation faults as a precursor to realizing a robust error
reporting facility in CU2CL.

Next, we cannot simply comment out or remove untrans-
latable or difficult to translate regions as this destroys pro-
gram semantics and will result in numerous silent errors.
However, we also cannot simply pass over these constructs,
emitting their original CUDA into the OpenCL output files,
as this would cause inelegant compile and runtime failures in
translated code. Hence, we propose an error reporting system
that actively reports all such constructs, along with their
source location at translation time, and adds easily searchable
comment flags to the emitted OpenCL source to aid in the
remaining manual translation efforts.

3) Enhanced Translator Coverage and Robustness: The
resolution of the simple mistranslations that we have identified
will noticeably improve the effective coverage and robustness
of the translator. Thus, we aim to implement solutions to the
aligned types, device identification, and kernel literal argument
idioms as we have already conceptualized mechanisms to
support their translation.

First, the translator must ensure that the data alignment
attribute is properly recognized, the alignment width extracted,
and appropriately reinserted using the OpenCL syntax when
translating struct definitions.

Next, we have begun the process of adding support for
kernel literal arguments by modifying the prototype to actively
recognize expressions within kernel call parameter lists which
are not variable identifiers and emit an appropriate notification
within the terminal error stream as well as output OpenCL
file. What remains is to introduce a mechanism for creating

Fig. 2. OpenCL Device Enumeration

int i;
cl_uint num_platforms = 0;
cl_uint num_devices = 0;
cl_uint p_dev_count, d_idx;

//allocate space for platforms
clGetPlatformIDs(0, 0, &num_platforms);
cl_platform_id * platforms =

(cl_platform_id *) malloc(
sizeof(cl_platform_id)

* num_platforms);

//get all platforms
clGetPlatformIDs(num_platforms,

&platforms[0], 0);

//count devices over all platforms
for (i = 0; i < num_platforms; i++) {

p_dev_count = 0;
clGetDeviceIDs(platforms[i],

CL_DEVICE_TYPE_ALL, 0, 0,
&p_dev_count);

num_devices += p_dev_count;
}

//allocate space for devices
cl_device_id * devices = (cl_device_id *)

malloc(sizeof(cl_device_id)

* num_devices);

//get all devices
d_idx = 0;
for ( i = 0; i < num_platforms; i++) {

clGetDeviceIDs(platforms[i],
CL_DEVICE_TYPE_ALL, num_devices,
&devices[d_idx], &p_dev_count);

d_idx += p_dev_count;
p_dev_count = 0;

}

//use a device
cl_context context = clCreateContext(

0, 1, &devices[deviceID], 0, 0, 0);

free(devices);
free(platforms);

a temporary variable of appropriate type, using it to store the
result of the expression, and passing a reference to the variable
to OpenCL’s setKernelArg function. However, some care must
be taken to ensure that creation of the temporary variable does
not create conflicts with other preexisting variables.

Finally, selection of a compute device among all devices
within a system can be achieved by enumerating over all



OpenCL devices over all OpenCL platforms and using an
integer index into an array to return a single cl device id
reference. Figure 2 demonstrates a mechanism for achieving
this functionality using OpenCL.

4) Validation: Due to the inability of any translator to com-
pletely translate from CUDA to OpenCL, it is difficult to pro-
vide a complete quantification of the validity of automatically
translated code. Currently, we have established the correctness
of fully-translated applications based on direct comparison of
output from the original CUDA application against the output
from unedited automatically translated OpenCL. However,
some applications will never fully translate due to untrans-
latable idioms. (At least until OpenCL is extended to provide
similar functionality.) Therefore, work remains to establish a
correctness metric for partial translations.

VIII. CONCLUSION

We have examined a large population of sample CUDA
applications through the lens of a source-to-source translator
prototype and identified a number of CUDA language idioms
which, at present, emerge as significant issues in any source-
to-source translation effort. We have provided a generalized
classification of these idioms as a preliminary step towards
creating robust mappings from the original CUDA constructs
to functionally equivalent OpenCL code. Further, we have
examined the relative frequency of these idioms within our
sample population to aid in focusing future development
efforts for greatest benefit. Finally, we have generated or are
in the process of generating functionally equivalent OpenCL
solutions to a number of the identified issues, which we aim
to deploy in the next generation of the CU2CL translator
prototype.
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