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Abstract—Wideband channelization is a computationally in-
tensive task within software-defined radio (SDR). To support this
task, the underlying hardware should provide high performance
and allow flexible implementations. Traditional solutions use
field-programmable gate arrays (FPGAs) to satisfy these require-
ments. While FPGAs allow for flexible implementations, realiz-
ing a FPGA implementation is a difficult and time-consuming
process. On the other hand, multicore processors while more
programmable, fail to satisfy performance requirements. Graph-
ics processing units (GPUs) overcome the above limitations.
However, traditional GPUs are power-hungry and can consume
as much as 350 watts, making them ill-suited for many SDR
environments, particularly those that are battery-powered.

Here we explore the viability of low-power mobile graphics
processors to simultaneously overcome the limitations of per-
formance, flexibility, and power. Via execution profiling and
performance analysis, we identify major bottlenecks in mapping
the wideband channelization algorithm onto these devices and
adopt several optimization techniques to achieve multiplicative
speed-up over a multithreaded implementation. Overall, our
approach delivers a speedup of up to 43-fold on the discrete
AMD Radeon HD 6470M GPU and 27-fold on the integrated
AMD Radeon HD 6480G GPU, when compared to a vectorized
and multithreaded version running on the AMD A4-3300M CPU.

Index Terms—polyphase filter banks; mobile GPU; wideband
channelization; software-defined radio

I. INTRODUCTION

The wideband channelizer, a critical component within
software-defined radio (SDR), extracts individual communi-
cation channels from a digitized wideband spectrum. This is
useful in many electronic warfare applications, where wide-
band spread spectrum signals are demodulated in real-time,
e.g., SDRs such as communication intelligence (COMINT)
and signal intelligence (SIGINT) [1]. Fig. 1 shows an example
of a wideband channelizer used in a SDR.

To perform real-time wideband channelization for such
SDR applications, the underlying hardware should be capable
of providing high performance under strict power budgets
without sacrificing on programmability [2]–[5]. The perfor-
mance demands for wideband channelization arise from its
proximity to the analog-to-digital converter, which forces the
channelizer to operate at the highest sampling rate among
all stages in a SDR pipeline. The channelizer becomes a
bottleneck stage as it processes the most data. To overcome
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Fig. 1. Polyphase Filter Bank (PFB) channelizer. The input RF band
signal x(n) is divided into M equally spaced channels. This implementation,
based on GNU Radio, is divided into three stages - FIR Filtering, FFT and
Channel Mapping.

this bottleneck, the hardware should provide sufficiently high
performance. The power requirements arise from a deploy-
ment perspective. With military applications oftentimes being
deployed on battery-powered mobile terminals, the hardware
should consume minimal power to reduce battery-drain. The
strict power constraints, combined with high performance
requirements, have led researchers to dub such architectures
as mobile supercomputers, meaning these devices should be
capable of providing supercomputer-like performances at the
power budget of a mobile phone processor [5].

A software-defined radio (SDR) should also adapt and
reconfigure itself to different standards, networks, and band-
width in which it might operate. While static reconfiguration at
the domain site is an option, many applications, particularly
in the military domain, need the radio to adapt to different
standards instantaneously and in real time. Apart from the
three requirements of performance, flexibility, and power, the
portability of such applications to different hardware is also
highly desired, as highlighted in the study by Ulversøy [2].

The various architectural options have their relative merits
and demerits in performing the compute-intensive portions of
SDR, such as wideband channelization. While ASICs have
previously been used to tackle the performance requirements
of wideband channelization, they lack the flexibility nec-
essary for SDRs. In contrast, the more flexible DSPs and
and general-purpose multicore CPUs suffer from performance
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limitations and are generally incapable of performing real-
time channelization. Though FPGAs can provide the necessary
performance, realizing a FPGA implementation can be difficult
and time consuming. Furthermore, FPGAs are not particularly
good at real-time adaptation to different standards as FPGA
reconfiguration is not instantaneous. Considering the above,
general-purpose graphics processing units (GPGPUs) seem to
be an appropriate choice to perform this task. Recent studies
have, in fact, shown the viability of accelerating wideband
channelization using discrete graphics processing units [6].
However, their deployment in the field, e.g., on battery-
powered mobile terminals, presents challenges due to their
high power consumption.

In this scenario, low-power mobile GPUs provide a poten-
tial alternative to perform this task. These devices form a sub-
class of graphics processors that consumes only a fraction of
the power consumed by traditional desktop and server GPUs.
This class of devices include emerging chips that integrate
the CPU and GPU onto a single die such as the Qualcomm
Snapdragon S4 and AMD APU (accelerated processing unit).
The tradeoff is that they are not as computationally capable
as their high-powered GPU brethren. Thus, if the performance
needs of SDR are to be met, understanding how to make best
use of these hardware resources is of paramount importance.

In this work, we explore the viability of using mo-
bile graphics processors to accelerate polyphase filter bank
(PFB) channelization, a highly efficient method for wideband
channelization [7]. We investigate the application of esoteric
application-specific and device-specific optimizations as a way
to bridge the performance gap. Our implementations are based
in OpenCL in order to ensure functional portability across
hardware. Our key contributions include:

• An efficient mapping of the performance-critical stages
of the PFB channelizer on GPUs.

• The realization of optimization techniques to improve
the performance on such devices [8]–[10] and reduce
associated data-transfer overhead [11].

• An evaluation of our implementation on mobile GPUs, in-
cluding, the first such evaluation on integrated CPU+GPU
devices.

The results demonstrate that our proposed mapping and
optimization onto a GPU delivers a speedup of up to 43-fold
for the discrete mobile GPU (AMD Radeon HD 6470M) and
27-fold for the integrated mobile GPU (AMD Radeon HD
6480G), when compared to an optimized multithreaded CPU
implementation running on the CPU of an AMD A4-3300M.

The rest of the paper is organized as follows. Section II
covers background material on PFB channelization and GPU
architecture. Section III discusses related work. We present
our approach and its associated mapping and optimization in
Sections IV and V, respectively. Next, we present our results
in Section VI and conclude in Section VII.

II. BACKGROUND

Many techniques have been explored to extract individual
channels from a wideband signal. Among these techniques,
polyphase filter bank (PFB) channelization is very popular due
to its high efficiency and low complexity [7], and therefore,
it is the target channelizer for our study. Specifically, our
implementation is based on the serial implementation of the
PFB channelizer from GNU Radio [12], the architecture and
mechanism of which is described by Harris [13]. We briefly
discuss the three stages within the PFB channelizer below:

1) FIR Filtering. The finite impulse response (FIR) filter
is a digital filter commonly used in signal processing
applications. In the wideband channelizer, a set of N
filters is used to isolate and decimate the channels. To
perform this task, a series of multiply-accumulate (MAC)
operations take place on the input signal (of length T+1)
and the filter coefficients (also known as taps). The output
of an FIR filter can be mathematically written as

y(n) =

T∑
i=0

tix(n− i) (1)

y(n) is the output signal at discrete time n.
x(n) is the input signal at discrete time n.
ti is the filter tap/coefficient.
T + 1 is the total number of taps in the filter.

2) FFT. The fast Fourier transform (FFT) is a computation-
ally efficient way to compute discrete Fourier transform
(DFT). This operation transforms the input signal from
the time domain to the frequency domain. In this ap-
plication, this transformation converts each channel into
baseband. This stage has the highest time complexity
(O(N log2N)) among all stages within the PFB chan-
nelizer. Mathematically, the output of an FFT operation
can be written as

Xk =

N−1∑
n=0

x(n)e−i2πk
n
N (2)

x(n) is the input to this stage.
Xk is the output from the stage.

3) Channel Mapping. In this stage, the output of the
polyphase filter is mapped to specific output channel
numbers. This allows for channels to be selectively
choosen for further baseband processing. If the mapping
function is specified by means of a map vector m,
then mathematically, the output of this stage can be
represented as

y(n) = x(mn) (3)

x(n) is the input to the stage.
y(n) is the mapped output.
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A. OpenCL Programming Model

OpenCL is an open-standard framework for writing pro-
grams on heterogeneous platforms. A program written in
OpenCL can execute on a variety of devices such as CPUs,
GPUs, APUs, DSPs, and other processors. OpenCL programs
are divided into two parts. One part is written in C/C++ and
executes on the host (CPU). This part launches jobs onto
the GPU and manages the GPU. The other part, known as a
kernel, is where the GPU-parallelized portion of the program
is executed. A kernel specifies the work done by a single GPU.
In AMD’s terminology, a thread is referred to as a work-item.
A group of work-item makes up a work-group. A work-group
exists to allow interaction between work-items within it.

To understand how these work-items are mapped to the
GPU, we briefly describe GPU architecture in AMD termi-
nology. A GPU compute device is made up of a collection of
compute units (CU). Each compute unit consists of an array of
processing elements (PE), and each PE consists of one or more
ALU. Each work-item executes on these processing elements.
In AMD GPUs, a collection of 64 work-items make up a
wavefront. A wavefront is mapped onto a compute unit and
the threads within a wavefront operate in a lock-step fashion.
There should be at least as many wavefronts as there are
compute units to keep all the compute units within the GPU
device busy. A compute unit may also have more than one
wavefront mapped to it.

To make best use of a GPU, we should exploit its memory
hierarchy in addition to keeping all the compute units busy.
The GPU’s memory hierarchy consists of five different types
of memory: private, local, constant, image, and global. Of
these, the global memory is off-chip and has a very high-access
latency. It can be used by all work-items. The image memory is
a special mode of global memory that uses the hardware cache
and is used to store images with a unique access pattern. The
other memories are on-chip and have a comparatively lower
latency. Private memory is allocated in registers and is private
to a work-item. It has the fastest access latency among all
memory types. Constant memory has slightly higher latency
and is used for fast lookup of data. Local memory is accessible
to all work-items within a work-group and can be used for
communication between work-items within a work-group. It
has better access latency than global memory. As on a CPU
architecture, an OpenCL application should leverage the GPU
memory hierarchy to achieve good performance.

III. RELATED WORK

Many studies have sought to accelerate the compute-
intensive wideband channelization. Savir [1] discusses a scal-
able FPGA implementation of polyphase filter bank channel-
izer. Fahmy and Doyle [14] present another reconfigurable
implementation of the PFB channelizer for spectrum sensing,
which only scales up to 1024 channels (for 57 taps) due
to block RAM-size limitations. Another 8192-channel, 4-tap
FPGA implementation by Monroe et al. [15] suffers from the

same limitation. In contrast, our GPU implementation scales
well beyond these configurations.

In recent times, researchers have explored accelerators
other than the FPGAs to accelerate wideband channelization.
Hamilton [16] used the Cell Broadband Engine to accelerate
polyphase channelization and obtained a six-fold speedup over
a serial CPU implementation. Alas, the achieved performance
of 200 MFLOPS is insufficient for our needs and the target
SDR application, which requires tens to hundreds of GFLOPS
in order to process thousands of channels.

SIMD-based DSP processors have been shown to be
suitable for SDR applications. Examples of such architec-
tures include SODA [17], [18] and AnySP [19]. Performance
evaluation on such architectures have highlighted the ability
of SIMD-based processors to provide the high performance
necessary for SDR applications at a reduced power budget.
Similar benefits can be expected from the SIMD-based GPU
architectures, which can also simultaneously allow program-
ming with high-level languages, thereby delivering better
programmability.

Several researchers have studied the GPU acceleration of
various stages of SDR pipeline, including wideband channel-
ization. van der Veldt et al. [6], for example, investigated the
acceleration of a PFB channelizer using high-powered GPUs
and multicore processors for radio astronomy applications.
They reported speed-up results for up to 1024 channels. To ob-
tain performance improvements, they applied a limited set of
optimizations, in particular, data transfer optimization, where
they used page-locked, write-combined, mapped buffers.

Our work goes significantly farther, including a wider
range of optimization techniques. First, to tackle the I/O
bottleneck, we adopt a data streaming approach [11] as we
observed better performance for this approach from our exper-
imental results. Second, our PFB channelizer and associated
optimizations target the low-power mobile graphics proces-
sors, as oftentimes military applications require deployment
on battery-powered terminals. Consequently, we focus on
such architectures for our evaluation, including a new class
of architecture called the accelerated processing unit (APU),
where the CPU and GPU are integrated onto a single die.

Apart from the above studies, other studies have been
conducted to accelerate individual stages of the channelizer
independently. Govindaraju et al. present a study on acceler-
ating FFT on NVIDIA GPUs [20]. del Mundo et al. present
a detailed study on optimizing the FFT stage of polyphase
channelization for different classes of AMD GPUs [21]. Ac-
celerating the FIR filtering stage has been the focus of several
studies [22], [23]. In this work, we design and optimize our
GPU implementation of the entire PFB channelizer — FIR
filter, FFT, and channel mapper.

IV. ALGORITHM MAPPING

In this section, we describe our approach in mapping the
PFB channelizer onto the GPU.

19th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2013)



A. Profiling the Serial Implementation of a PFB Channelizer

We profile the serial implementation of a PFB channelizer
from GNURadio to identify its performance critical stages.
The choice of parameters for the channelizer reflect the typical
requirements of the target defense applications, viz. thousands
of channels and a dozen of taps per channel. Fig. 2 shows
the breakdown of execution time for the three stages (FIR
filtering, FFT and channel mapping) when running on the
CPU portion of the AMD A4-3300M. We observe that the FIR
filtering stage dominates the overall execution time in spite of
its modest O(N) time complexity. Therefore, achieving high
performance for this stage is critical.
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Fig. 2. Time profile of PFB channelizer. Percentage of total execution time
spent in each stage for different problem sizes. FIR filtering stage dominates
the overall execution time.

It is important to note that in order to achieve multifold
speedup over the CPU implementation, not only do we need to
accelerate the FIR filtering stage, but we must also accelerate
the other stages so that they do not become performance
bottlenecks. In short, we accelerate all three stages and apply
relevant optimization techniques. However, a greater emphasis
is laid on the bottleneck stage of FIR filtering.

B. FIR Filtering

GPUs have high memory-access latency to global memory.
In order to overcome such high latency, many threads are
executed simultaneously so that when one set of threads
(referred to as wavefront) waits for data, another set can
take its place. Therefore, the FIR filtering stage must run
many threads on GPU to hide the high memory-access la-
tency. A simple mapping scheme, where the N FIR filters
operating in parallel, are mapped to N GPU threads does not
suffice. To obtain the necessary degree of parallelism, there
are two options: (1) exploiting hierarchical parallelism and
(2) batching multiple iterations together. In a hierarchical
implementation, we can parallelize the dot-product operation
for each filter, apart from obtaining parallelism via the N
filters operating in parallel. However, the reduction step in the

dot-product will invariably require atomic operations, which
are known to perform poorly in GPU architectures [24]. If
multiple iterations are batched together, we can achieve the
required parallelism without paying any performance penalty,
and hence, this is the approach we chose.

C. FFT

To accelerate the FFT stage, we use AMD’s highly opti-
mized FFT library [25]. We make use of the batching support
offered by the FFT library to keep the GPU cores busy.
Input to and output from this stage are kept device-resident
to minimize data-transfer overheads. It is critical to have the
intermediate stages be device-resident. In fact, the previous
work on accelerating polyphase channelization by van der
Veldt et al. reported a nine-fold performance degradation
from data transfers [6]. In contrast, when we ensure that the
intermediate stages are device-resident and couple it with data
streaming, the data transfer overhead goes to virtually zero.

D. Channel Mapping

The channel mapping stage is a memory-intensive op-
eration. In our implementation, a single map operation is
performed by a GPU thread so that many threads can run
in parallel to make the best use of the bandwidth offered
by global memory. The total number of memory transactions
depends on the order of elements in the input map vector.
Therefore, we rearrange the elements in the map vector, which
is a one-time cost, in order to minimize the total number of
memory transactions.

V. PERFORMANCE OPTIMIZATION

This section describes the various computation and com-
munication optimizations that we propose and realize in our
implementation.

A. Reducing Data-Transfer Overhead

The overhead from data transfer across PCI Express is
a significant problem for signal-processing applications like
wideband channelization due to the large input sizes associ-
ated with such applications. Though the CPU and GPU are
integrated on a single APU die, the data still has to pass across
PCI Express for the GPU to manipulate it, and therefore, this
problem exists in these devices as well [26]. To overcome this
problem, techniques such as data streaming and data compres-
sion have been developed [11]. For our application, the data
compression technique is not applicable so we focus only on
the data streaming approach. In this technique, a portion of
the data is first transferred to the GPU. As the GPU operates
on this partial data, the rest of the data is transferred to the
GPU, thereby overlapping computation and communication.
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Our approach eliminates the double-buffering1 overhead
associated with the data streaming approach. This is important
in mobile GPUs, where all resources including memory, are
limited. Fig. 3 shows how we avoid using two buffers for
the input data. The FIR filtering kernel takes the data in the
input buffer, operates upon it, and places the output in an
intermediate buffer. Since the GPU can perform some other
task, namely FFT, using the intermediate buffer, the input
buffer becomes available for data transfer. When the GPU
executes the FFT stage by operating upon the intermediate
buffer, the next segment of data is transferred to the original
input buffer. Similarly, the device-to-host transfer takes place
after the channel mapping stage finishes and the FIR filtering
stage of the next iteration begins. Through this technique, we
can hide nearly all of the data transfer overhead without having
to allocate two sets of buffers for the input or output.
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Host to Device Device to Host

(a) Using a single queue for data transfer and kernel execution results in
unnecessary serialization.
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(b) Using two separate command queues for kernel execution and data transfer
allows overlap of computation and communication. Dependencies across stages
shown using arrows.

Fig. 3. Data Streaming. Reduces data transfer overhead by overlapping
computation and communication.

B. GPU Optimizations

1) Increasing GPU occupancy by batching: Running
many threads is necessary to hide the memory latency of GPUs
and to keep the GPU cores busy. We do so by batching many
iterations together. However, if the register usage per thread
is very high, GPU occupancy comes down due to the limited
register file size. Only so many threads can be kept on flight as
can be supported by the register file. In addition, high register

1With the double-buffering technique, a set of two buffers is used for input
data. When the GPU operates on one buffer, data is transferred to the other,
and the GPU alternates between the two buffers.

usage can lead to register spills into global memory. So, while
running many threads, we must also simultaneously ensure that
register usage per thread is kept low so that occupancy is not
affected. This is achieved by unrolling loops fewer times.

Batching also results in fewer OpenCL calls. These calls
introduce non-negligible overhead, which is greatly reduced
when several iterations are batched together into a single call.

2) Data layout transformation: Our baseline implemen-
tation does not access memory locations contiguously as
it retains GNURadio’s data layout. This can lead to bank
conflicts for certain problem sizes, resulting in serialized
memory accesses and increased kernel execution time. Our
analysis revealed that large execution times for the serial
implementation of FIR filtering stage (shown in Fig. 2) were
due to poor data layout even though the filtering operation by
itself was highly optimized. We reordered the input data so
that memory access requests go to contiguous locations, as
shown in Fig. 4. As a side effect of this transformation, we
arrived at a layout that allows data streaming, where partial
results can be computed from partial data.
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(a) Default layout: Requests from all compute units go to the
same bank. Such requests are serialized and therefore extra time
is spent accessing the data.
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(b) After reorganizing data: Requests go to different banks and
therefore can be served in parallel.

Fig. 4. Data Layout Transformation. Dotted arrows represent the order
in which data is stored. Solid arrows represent data access from the compute
units. Reorganizing the data as shown in (b) helps avoiding bank conflicts.

3) Using local memory: Local memory, also known as
local data share (LDS), provides much higher bandwidth than
global memory. This memory can be shared by work-items
within a work-group. Thus, such memory should be used by
data that is frequently reused and shared by work-items within
a work-group. FIR filtering exhibits a high reuse of data. Our
software design, where the work-items within a work-group
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always operate on the same filter, ensures that the work items
share and reuse this fast-accessible data.

4) Using constant memory: The access latency of constant
memory is several times faster than that of global memory. In
our application, where the value of filter taps remains the same
across iterations, we store this value in constant memory for
fast access. We employ a blocking technique for larger tap
sizes in order to fit them into constant memory.

5) Reducing dynamic instruction count: We adopt several
techniques to reduce the number of dynamic instructions. We
partially unroll loops so that dynamic conditional checks can
be reduced. We limit the number of unrolls to four iterations
in the FIR kernel so that register spills to the high latency
global memory do not occur. We also eliminate the common
sub-expressions involved in calculating the array indexes in
the FIR kernel to reduce the dynamic instruction count.

6) Vectorization: Loading memory in vector types such
as float2 and float4 is faster than loading floats. Also,
using vector types in performing arithmetic operation ensures
high packing density and resource utilization in VLIW archi-
tectures. In our implementation, we use the float2 data type
to represent the real and imaginary parts of the complex input
signals. We use float8 values in the FIR kernel to perform
the mathematical operations.

7) Branching: GPUs perform poorly when it comes to
branching operations. Though our application does not require
any significant branching, a poorly designed solution can waste
significant time performing branches. We carefully designed
our implementation ensuring that there are no branches in our
kernel implementations.

8) Fused Multiply-Add: We use fused multiply-add
(FMA) operations to perform the FIR filtering so that archi-
tectures having special units for such operations can make use
of them. Studies have shown that better performance can be
achieved at a lower power budget by using such units, as the
control overhead is greatly reduced [18]. However, we do not
evaluate power benefits from optimization in this work.

VI. PERFORMANCE EVALUATION

A. Experimental Testbed

We evaluate the performance of our OpenCL implementa-
tion of a PFB channelizer on an AMD Radeon HD 6480G
(integrated GPU) and AMD Radeon HD 6470M (discrete
mobile GPU) and compare it to the CPU of the AMD A4-
3300M APU (Llano). Table I shows the details of the hardware
platforms. For convenience, we refer to HD 6480G, HD
6470M, and the CPU portion of the A4-3300M as integrated
GPU, discrete GPU, and multicore CPU, respectively.

The details of software platform are as follows. We use
OpenCL v1.1 and AMD APP v2.8 SDK for our channelizer
implementation. For FFT, we use the accelerated parallel
math library for FFT, clAmdFft-1.10.274, from AMD. All our

TABLE I
HARDWARE PLATFORM CHARACTERISTICS

H/W Type Multicore CPU Integrated GPU Discrete GPU

Platform A4-3300M HD 6480G HD 6470M

Compute Units 2 3 2

Total Cores 2 240 160

Core clock 1900 MHz 444 MHz 750 MHz

Memory size 4096 MB 512 MB (shared) 1024 MB

Memory clock 675 MHz 675 MHz 800 MHz

Memory type DDR3 DDR3 DDR3

TDP
35 W (combined)

9 W
26 W 9 W

Note: The individual TDP of CPU and GPU portions of the llano APU and
the memory clock of APU were obtained from CPU-Z and GPU-Z utility

tools. Other values are obtained from the specification sheet.

implementations run on 64-bit Windows 7 OS.
The discrete GPU is connected to the host via second-

generation PCIe x16. We disable the power-saving option for
all experimental runs, meaning the devices operate at the clock
settings shown in Table I for the entire duration of execution.
All performance results reported in this section are median
values of 25 runs.

B. Performance Results

In this section, we report the performance obtained from
the integrated and discrete GPUs and compare it to the per-
formance obtained from the multicore CPU for our optimized
OpenCL implementation.

Fig. 5 shows the execution time for 1024- to 8192-channel
PFB channelizers with 12 taps per filter. The numbers are
reported for the multicore CPU and the two types of GPU.
This implementation of the channelizer takes complex signals
as input and uses floating-point taps. Each FIR filter within the
channelizer operates on 1K sample points for a total of 1M-
8M sample points for the respective channelizers. Fig. 5 also
shows the speedup results for the GPUs on the secondary axis.
Our baseline implementation is an optimized multithreaded
implementation making use of vector instructions running
on the CPU of the AMD A4-3300M. Our optimized GPU
implementation outperforms the baseline implementation by a
factor of 18.3-43.0 for the discrete GPU and 18.4-27.2 for the
integrated GPU for the different problem sizes. The discrete
GPU, which has fewer cores but operates at a higher clock rate,
was able to outperform the integrated GPU for up to 2048
channels. Beyond 2048 channels, the discrete GPU showed
diminishing returns with performance marginally poorer than
the integrated GPU. An analysis of the performance counters
from the AMD APP Profiler [27] showed an increase in
LDSBankConflict and a decrease in CacheHit counters
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Fig. 5. Performance and Scalability Results. Execution time on multicore
A4-3300M CPU, integrated HD 6480G GPU and discrete HD 6470M GPU.
Speedup of GPU implementation over optimized CPU implementation shown
in secondary axis.

for the discrete GPU for the larger problem sizes. Thus, the
relatively poor performance can be attributed to the inability
of discrete GPU to cache and reuse large data sizes effectively.

Fig. 6 shows the performance obtained for the PFB
channelizer (excluding the post-processing stage of channel
mapping) on the integrated GPU and discrete GPU, in terms
of GFLOPS. In the best case, we achieved a performance of
26.14 GFLOPS on the discrete GPU and 17.48 GFLOPS on
the integrated GPU. This corresponds to an energy efficiency
of 2.9 GFLOPS/watt and 1.94 GFLOPS/watt for the discrete
and integrated GPUs, respectively, in comparison to the 0.19
GFLOPS/watt for the high-power GPUs reported in earlier
work [6].
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Fig. 6. Performance of PFB channelizer in GFLOPS. The peak per-
formance of the discrete and integrated GPU are 240 GFLOPS and 213.1
GFLOPS, respectively.

C. Impact of Data Transfer Optimization and GPU Optimiza-
tions

Here we evaluate the performance impact of our optimiza-
tion techniques described in Section V. We broadly classify
the optimizations into data transfer optimizations and GPU
performance optimizations.

Fig. 7 shows the contribution of each class of optimizations
in improving the performance of PFB channelization for the
discrete GPU and integrated GPU. The execution times are
shown for a 1024-channel PFB channelizer with 12 taps per
filter. On the discrete GPU, the unoptimized implementation
takes 102.5 ms to finish execution. Upon applying the GPU
optimizations discussed in Section V, this comes down to
14.1 ms, giving a speedup of 7.27. By efficiently hiding
data transfer overheads, we achieve an additional speedup
of 1.85, resulting in an overall execution time of 7.6 ms.
Similarly, for the integrated GPU, the GPU optimizations
and data transfer optimizations result in a speedup of 4.82
and 1.43, respectively, and together reduce the execution time
from 93.5 ms to 13.6 ms. It is important to note that data
transfer optimizations helped in improving the performance
of both discrete and integrated GPUs equally even though in
terms of percentage improvement, the values stand at 85%
and 43%, respectively. In terms of absolute magnitude, the
performance improvement is comparable and the seemingly
lower percentage for integrated GPU is due to the relatively
longer time spent in computation.

Overall, the optimizations result in a speedup of 13.4 and
6.9 for the discrete GPU and integrated GPU, respectively,
thereby contributing significantly to the multi-fold speedup
over the CPU implementation.
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Fig. 7. Performance improvement from optimization techniques.

VII. CONCLUSIONS AND FUTURE WORK

Performing wideband channelization in real time for
software-defined radio (SDR) is a challenging problem due to
the high computational requirements and generally low-power
constraints. In this work, we explored the viability of using
mobile graphics processors to perform this task in place of
the traditionally used FPGAs and high-power GPUs.

In this work, we identified the stages within a polyphase
filter bank (PFB) channelizer that are sources of performance
bottlenecks and presented an efficient mapping scheme that
makes efficient use of the underlying hardware. We overcame
the I/O bottlenecks associated with data transfers over PCI
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Express by adopting a data streaming approach. We make use
of several optimization techniques identified in the literature to
improve the performance of our unoptimized GPU implemen-
tation by factors of 13.4 and 6.9 for our discrete and integrated
GPUs, respectively. As a consequence, we showed that it is
possible to achieve several-fold speedup (of up to 43-fold)
even for mobile GPUs, thereby providing a realistic alternative
platform to perform wideband channelization.

In the future, we will explore the possibility of using
the CPU and GPU portions of a fused device (e.g., APU)
simultaneously with each type of processor performing com-
putations that best suits it. We will also compare and contrast
the performance and power consumption of GPUs with other
accelerator platforms such as the FPGA.
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