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Abstract—Commercial SRAM-based, field-programmable
gate arrays (FPGAs) have the capability to provide space
applications with the necessary performance, energy-efficiency,
and adaptability to meet next-generation mission requirements.
However, mitigating an FPGA’s susceptibility to radiation-
induced faults is challenging. Triple-modular redundancy (TMR)
techniques are traditionally used to mitigate radiation effects,
but TMR incurs substantial overheads such as increased area
and power requirements. Using partial reconfiguration (PR),
FPGAs could be used to dynamically adjust the fault-tolerance
scheme as the radiation environment changes over time. In
order to manage these dynamic adjustments, a fault-tolerant
task scheduler is necessary.

We improve scheduling in the presence of time-varying fault
rates by developing a fault-tolerant scheduling heuristic. Our
heuristic combines task execution time and system fault rate to
determine the optimal fault-tolerance mode for the task. The
heuristic is evaluated using software simulations of a system
in periodic and burst fault environments. Results show our
scheduling technique is capable of reducing the task rejection
ratio in periodic environments by 94% and in burst environments
by 48% over static TMR, and the adaptive heuristic approaches
the performance of an optimal predetermined heuristic. Integra-
tion of our fault-tolerant scheduling heuristic with other pre-
existing PR architectures can enable their use in dynamic fault
environments.

I. INTRODUCTION

The need for high-performance embedded space systems is
constantly growing as new, high-fidelity sensors increase the
amount of data collected by orbiting satellites. The capabilities
of these sensors outpaces the ability to transmit their data
to ground stations. Increasing future systems’ onboard data-
processing capabilities can alleviate this downlink bottleneck
while enabling future space systems to keep up with stringent
real-time constraints. However, increasing the onboard data-
processing capabilities requires high-performance computing,
which has largely been absent from space systems.

One approach for adaptive high-performance space system
design leverages hardware-adaptive devices such as field-
programmable gate arrays (FPGAs), which provide parallel
computations at a high level of performance per unit size,
mass, and power [1]. Fortunately, many space applications,
such as synthetic aperture radar (SAR) [2], hyperspectral
imaging (HSI) [3], image compression [4], and other im-
age processing applications [5], where onboard data pro-
cessing can significantly reduce data transmission require-
ments, are amenable to an FPGA’s highly parallel architecture.

FPGA reconfiguration enables multiple functions to be time-
multiplexed onto the FPGA’s hardware resources, reducing the
number or size of processors required to meet the application’s
computational demand. Thus, FPGAs are capable of creating
small, lightweight, yet powerful systems that can be optimized
for a space application’s time-varying hardware requirements.

In order to leverage FPGAs in space systems, the FPGA
must operate correctly and reliably in high-radiation environ-
ments, such as those found in near-Earth orbits. Radiation-
induced single-event upsets (SEUs) can cause errors within the
FPGA user logic and routing resources, which can manifest as
functional changes or incorrect data. Fault-tolerant techniques,
such as triple-modular redundancy (TMR) and memory scrub-
bing, can protect the system from most SEUs and significantly
decrease the SEU-induced errors, but designing an FPGA-
based space system using TMR introduces at least 200%
area overhead for each protected module. Depending on the
expected upset rates for a given space system, other lower-
overhead fault-tolerance methods could be used to provide
sufficient reliability while maximizing the resources available
for performance.

For traditional space systems, architectural requirements
are determined by estimating the expected worst-case upset
rates and including an additional safety margin. However, since
SEU rates vary based on orbital position and the majority
of orbital positions experience relatively low upset rates, a
system designed for the worst-case upset-rate scenario contains
processing resources that are wasted during the frequent low-
upset-rate periods. In order to provide the necessary reliability
during high-upset-rate periods and reduce the processing over-
head incurred during low-upset-rate periods, the fault-tolerance
method must change based on the current upset rate. Recon-
figurable Fault Tolerance (RFT) is a framework that enables
this run-time modification of fault tolerance [6]. During high-
upset-rate periods, the system can be reconfigured to provide
high reliability with TMR at the expense of reduced processing
capabilities, while during low-upset-rate periods the system
can be reconfigured to provide higher performance by re-
provisioning the redundant hardware for additional application
functionality. This upset-rate-based adaptability enables high
performance while maintaining reliability.

In order to optimize a system for performance and relia-
bility, the fault-tolerant mode must be selected carefully based
upon the current fault conditions experienced by the system.
In this paper, we propose a fault-tolerant scheduler that can
schedule real-time tasks as well as select a heuristic to select
a fault-tolerant RFT mode for each task. We then evaluate the
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effectiveness of the proposed heuristic using two case-study
simulations.

The remaining sections of this paper are organized as
follows. Section 2 provides background and surveys previous
work related on fault-tolerant task scheduling for real-time
embedded systems. Section 3 describes a novel FT-scheduling
criteria for determining the optimal FT-mode. Section 4 de-
scribes a task-scheduling simulation framework that enables
fault-injection in order to demonstrate the effectiveness of
our environmentally-aware scheduling heuristics. Section 5
analyzes the simulation results and discusses the effectiveness
of the tested heuristics. Finally, Section 6 presents conclusions
and outlines directions for possible future research.

II. RELATED WORK

Task scheduling algorithms can be categorized as either
online or offline. Offline scheduling algorithms have complete
knowledge of all tasks that must be scheduled. The general
scheduling optimization problem is NP-hard, but efficient
heuristics exist, and offline schedules can be pre-determined
at compile-time. With online scheduling, tasks arrive at the
scheduler periodically over time, and must be placed around
previously scheduled tasks. Task arrival rates and patterns can
greatly affect the quality of the scheduler’s results. Arndt
et al. [7] examined many online scheduling algorithms for
distributed parallel computers, and used simulation to evaluate
their performance. Of the several algorithms studied, the First-
Fit algorithm, which prioritizes scheduling by the arrival time
of each task, provided good schedule lengths while minimizing
the average wait times.

Real-time systems introduce additional constraints for task
scheduling. Each task must be completed by a deadline,
otherwise the results will no longer be relevant or needed. A
hard deadline must be met, otherwise the system is considered
failed. A firm deadline can be missed, but the usefulness of
the result after the deadline is zero. A soft deadline can be
missed, but the value of the result decreases after the deadline
has passed. For a hard real-time system all deadlines must
be met, but the goal of a soft real-time system is to meet as
many deadlines as possible while optimizing for other critera.
Traditionally, schedulers attempt to minimize criteria such as
makespan (total schedule length) or average task latency.

Han et al. [8] created a fault-tolerant scheduling algorithm
for periodic real-time software tasks. For each primary task, an
alternate less-precise task is also used to generate a sufficient
result before the deadline. These alternate tasks are scheduled
as close to the task deadline as possible. In the case of a
primary task failure, the alternate task will be executed. If
the primary task succeeded, the alternate tasks are discarded.
Their algorithm is intended for offline use and was intended
to protect systems against software faults. In [9], Pathan ex-
tends the rate-monotonic (RM) scheduling algorithm, used for
scheduling periodic real-time tasks, to support temporal error
masking (TEM). TEM schedules multiple copies of tasks to
detect faults in any one copy, with additional copies scheduled
to perform voting when faults are detected. These real-time
scheduling algorithms require periodic tasks to perform a
scheduling analysis. Scheduling aperiodic real-time tasks is a
more difficult problem and is currently being studied.

Scheduling tasks for reconfigurable computing creates an
additional level of complexity. Instead of scheduling a task for
a one-dimensional array of processors, scheduling on a two-
dimensional FPGA fabric becomes a constrained placement
problem. Additionally, tasks may have multiple hardware or
software implementations, increasing the overall search space.
Banerjee et al. [10] present an offline KLFM heuristic [11]
which incorporates detailed placement information in order
to provide high-quality schedules. Mei et al. [12] combine
a genetic algorithm to determine HW/SW placement with a
traditional list scheduling algorithm to enable online schedul-
ing of real-time reconfigurable embedded systems. Steiger et
al. [13] developed two heuristic scheduling algorithms, Hori-
zon and Stuffing, which provide good results while limiting
the computational requirements.

III. SELECTION CRITERIA FOR FAULT-TOLERANT MODE

RFT mode switching can be triggered by a priori
knowledge of the operating environment, application-triggered
events, or external events. In an RFT system, the expected
fault rate can be estimated either directly or indirectly. An
external radiation sensor can be directly interfaced with the
FPGA, allowing the system to track the current fault rate and
predict future fault rates. Alternatively, the RFT system can
indirectly determine fault rates using models of the expected
fault environment [6]. By correlating the space system’s cur-
rent position to an existing model, a fault-rate estimate can be
used to make scheduling decisions.

In the following sections we assume that tasks can be
scheduled with no fault tolerance (Simplex), duplication with
compare (DWC), or triple-modular redundancy (TMR). Data
errors in tasks are detected by comparing or voting on the
output of each task replica. We also assume that the system
can estimate the current fault environment using a pre-existing
model of the system’s orbit.

A. FT-Mode Selection using Thresholds

One of the most straightforward methods for selecting an
appropriate fault-tolerance mode is the use of thresholds. At
very high fault rates, TMR is required to maintain reliability.
At low fault rates, DWC or Simplex modes may provide
sufficient reliability while increasing performance. At each
time step, the current fault rate is measured, and new tasks are
assigned based on the pre-selected rules. The optimal threshold
occurs at the fault rate where the reliable performance of
TMR and DWC are equal. The ideal scheduling heuristic will
select TMR when the current fault rate is above the fault-rate
threshold, fthresh, and will select DWC otherwise. Selecting
the appropriate values for the threshold is dependent on the
application and environment. Determining fthresh requires
information about fault rates, task frequency, task load, and
other factors which may not be static throughout a system’s
operation.

B. Time-Resource Metric for FT-Mode Selection

Instead of depending upon a user-defined threshold value
to determine a fault-tolerance strategy, we explore a possible
metric which can estimate the optimal threshold. The metric
combines computation time (τ ) and fault probability of a single



task (f ) in order to select between FT modes. By developing
a scheduling metric that incorporates a dynamic fault rate,
we intend to improve overall system performance without the
need for expert user input. Given the current fault rate, f , the
reliability of a task at the end of its computation time, R, is
given by the following equations (depending on mode):

RSimplex = (1− f)τ
RDWC = (1− f)2τ
RTMR = 3(1− f)2τ − 2(1− f)3τ

(1)

If tasks are running in DWC or TMR mode, faults are
discovered at the end of the task’s computation time. Faulty
tasks are then rescheduled until they complete successfully.
The average number of times a task must be executed in
order to successfully complete is then given by the following
geometric series:

τeff =

∞∑
n=0

τ(1−R)n =
τ

R
(2)

We define a time-resource coefficient, α, which combines
the effective execution time with the required resources of a
given task (α = N × τeff ). Then, by comparing the α of a
DWC or TMR task, we can determine which mode is optimal
for reliability (lower is better). In Equation 3, we solve for
conditions where DWC will provide lower α than TMR.

2τ

(1− f)2τ
≤ 3τ

3(1− f)2τ − 2(1− f)3τ
(3)

Simplifying Equation 3 provides the following simple
relation:

(1− f)τ ≥ 3

4
(4)

Based on the definition of α, DWC provides more reliable
performance than TMR when RSimplex is greater than 0.75.
For low fault rates, DWC provides higher overall performance.
For very high fault rates, or very long execution times, the reli-
ability of TMR scheduling is preferred. A similar analysis can
be performed for simplex tasks, however simplex scheduling
has no method for detecting faults. We use this conclusion as
the basis for an adaptive fault-tolerance threshold.

IV. SCHEDULER FOR RFT

Traditional fault-tolerant scheduling algorithms assume that
the fault rate experienced by the system will be constant, and
that the fault-tolerance strategy will also be constant. For an
RFT-based system, a scheduler which uses the current fault rate
is necessary to maximize system utilization while maintaining
system availability. The fault-tolerant scheduler presented in
this section can schedule tasks in any FT mode based on user-
defined thresholds or the α-metric.

Fig. 1. Flowchart of Scheduling Simulator

A. RFT Architecture Description

The RFT system described in [6] contains a microproces-
sor connected to several large partially-reconfigurable regions
(PRRs) through a shared system bus. During normal system
operation, unique tasks can be scheduled to any of the PRRs.
Depending on system configuration, the outputs of three con-
tiguous PRRs can be voted on to provide coarse-grained TMR
functionality, or two PRRs can provide DWC functionality.
Each of these PRRs are large and identical in size, and can
be represented with a 1D area model, reducing many of the
scheduling problems presented in Section II.

B. Software Simulation

In order to evaluate our scheduling technique and possible
heuristics, a software-based discrete-time simulator was devel-
oped in C++. The simulator enables us to specify task arrival
rates, task deadlines, dynamic fault rates, and scheduling
algorithms. In addition to scheduling tasks, the simulator can
also inject faults into tasks and force re-scheduling of failed
tasks.

Figure 1 shows the basic overview of how the simulator is
used. At each time step, tasks are randomly added to a task
pool. This process is modeled as a Poisson process with mean
λarrival. All tasks in the task pool are scheduled, if possible,
and then moved to the reservation list. When multiple tasks
arrive simultaneously, tasks are scheduled using an earliest-
deadline-first (EDF) heuristic. The scheduler does not employ
preemption; tasks are scheduled on arrival only, and new tasks
must be placed around the existing schedule. Tasks which
cannot be scheduled before their deadlines are rejected. If a
task is scheduled to begin at the current time step, the simulator
moves the task from the reserved list to the execution list.

After tasks have been scheduled, faults are injected into
each PRR with probability f in order to simulate the dynamic
fault environment. At the end of the task’s execution, the
outcome of the task is determined based upon the number of
faults encountered (i.e., Simplex and DWC tasks fail with 1
fault, TMR tasks fail with faults in 2 or more PRRs). Multiple



faults within a single PRR have no additional effect on the
system. If the task fails, the scheduler then returns the task
to the task queue to be re-scheduled. All other reserved tasks
(scheduled, but not yet executing) are also returned to the task
queue to be rescheduled. Fault-tolerant tasks are rescheduled
until they successfully complete or can no longer meet their
deadline.

When tasks must be re-scheduled due to faults, they are
treated as a new task for scheduling purposes, although their
original deadline is maintained. The fault-tolerant mode for
rescheduled tasks will based on the fault rate at the time of
rescheduling.

V. ANALYSIS & RESULTS

In the following analysis, task execution times (texec) are
uniformly distributed in [10, 100] time steps with deadlines
(tdeadline) of [100, 200] time units. For simplicity, we assume
that a time step is 1 second. Simplex tasks use one processing
region, DWC tasks use two processing regions, and TMR
tasks use three processing regions. The simulated system uses
12 processing regions (NPRRs) in order to enable flexibility
in placing TMR and DWC tasks. For each experiment, we
measure the performance of each metric with the scheduler’s
guarantee ratio (percentage of total tasks scheduled success-
fully) while attempting to schedule 100,000 tasks.

A. Constant Fault Rates

Initially, the simulator is used to get a fault-free baseline
for comparison purposes. Figure 2 shows the effect of arrival
rate on the performance of the system. At low arrival rates,
Simplex, DWC, and TMR scheduling can all meet the system
demand. However, arrival rates higher than 0.06 tasks per
second begin to impact the schedulability of the TMR system
because there are not enough resources to handle all incoming
tasks. Using DWC for fault tolerance will result in higher
guarantee ratios since more DWC tasks can be scheduled at any
one time. The lack of a fault-tolerance mechanism excludes the
use of Simplex scheduling in the presence of faults.

In order to investigate the effect of fault rates on our
system, we chose a constant arrival rate of 0.075 tasks per sec-
ond. With this arrival rate, the DWC system can successfully
schedule all incoming tasks, while the TMR system cannot.
Using the arrival rate in this way, we attempt to define a
system which requires DWC to meet performance demands
but can temporarily use TMR to meet reliability constraints.
The effect on the guarantee ratio is shown in Figure 3. At
low fault rates the DWC mode provides higher throughput,
while TMR outperforms DWC at high fault rates. Our adaptive
metric produces high throughput at low fault rates, closely
tracking the performance of DWC, but performs between TMR
and DWC at intermediate fault rates. At higher fault rates,
the guarantee ratio of the adaptive heuristic produces results
close to TMR. From these constant-fault-rate results, an ideal-
threshold heuristic can be determined. The crossover fault rate
for TMR and DWC occurs at 0.0025 faults/sec.

B. Dynamic Fault-Rate Case Studies

In order to get a benefit from the adaptive scheduling
methods, the fault rates experienced by the system must vary.

Fig. 2. Effect of Arrival Rate on Fault-Free Operation (NPRRs = 12,
texecε[10, 100], tdeadlineε[100, 200])

Fig. 3. Effect of Fault Rate on Task Rejection (NPRRs = 12,
texecε[10, 100], tdeadlineε[100, 200], λarrival = 0.075)

We present two fault profiles which represent patterns com-
monly seen in space missions. Figure 4 shows the fault profiles
used for the following analysis, based on the fault model
in [6]. The first profile is a sinusoidal pattern with a 90-minute
period which is characteristic of fault rates in Low-Earth Orbit
(LEO). The second pattern (Burst) represents Highly-Elliptical
Orbits (HEO), where the system experiences low fault rates for
most of the orbit, with a large burst when making the closest
approach to Earth, once every 12 hours. For the following
case studies, four different scheduling heuristics are examined.
The TMR-only and DWC-only heuristics will schedule every
task in their respective mode. The ideal-threshold heuristic will
use the fault-rate threshold measured in the previous section
(0.0025 faults/sec) to choose between the DWC and TMR
modes. The adaptive heuristic uses Equation 4 to determine
the FT mode for each task. Each heuristic will be evaluated
using an arrival rate of 0.075 tasks/sec and the same parameters
used in Section V-A.

For the Sinusoidal case study, fault rates are low compared
to the average task execution time. For this fault profile,



TABLE I. DYNAMIC SCHEDULING RESULTS

Case Study FT Metric Guarantee Ratio Reject Ratio Avg. Latency (s)
Sinusoidal TMR-Only 0.970 0.030 51.2
Sinusoidal DWC-Only 0.998 0.002 8.0
Sinusoidal Ideal 0.998 0.002 7.9
Sinusoidal Adaptive 0.998 0.002 8.2

Burst TMR-Only 0.935 0.065 53.6
Burst DWC-Only 0.962 0.038 9.9
Burst Ideal 0.967 0.033 11.7
Burst Adaptive 0.966 0.034 11.2

scheduling tasks with the DWC-only, ideal-threshold, or adap-
tive heuristics provide an equivalent rejection ratio, 0.2%.
There are enough system resources to make re-computation
of failed DWC tasks better than simply using TMR to protect
against all failures. The fault rate rarely gets high enough
for the threshold or adaptive heuristics to schedule tasks in
TMR mode. The adaptive heuristic performs well, reducing the
number of rejected tasks over the TMR-only strategy by 94%,
while maintaining a low average task latency of 8 seconds per
task.

In the Burst case study, fault rates are low except during a
short window of time with extremely high fault rates. Unlike
in the previous case study, the adaptive heuristics will benefit
from the large range of fault rates and each heuristic has
different performance characteristics. For this fault-rate profile,
the adaptive heuristics perform the best, with 11% fewer
rejected tasks than the DWC-only strategy and 48% fewer than
the TMR-only strategy. Additionally, the adaptive heuristic has
only 3% more rejected tasks than the ideal-threshold heuristic.
TMR is only optimal when the high-fault-rate burst occurs.
Otherwise, DWC will better utilize the system resources. The
Burst fault profile is ideal for all dynamic metrics, since the
two phases are highly separated.

C. Scheduling Improvements

At extreme fault rates (high or low), the adaptive heuristic
will schedule all incoming tasks in the same mode. However,
for moderate fault rates, both DWC and TMR tasks will be
scheduled depending on task computation time. One drawback
to the dynamic fault-tolerant selection metrics is the resource
fragmentation that occurs when different sized objects are

Fig. 4. Fault-Rate Profile for Case Studies

Fig. 5. Resource Fragmentation from Adaptive Placement

placed on the FPGA fabric. This effect can produce sched-
ules similar to Figure 5, where fragmentation causes poor
utilization of the available FPGA resources. As tasks arrive to
the system, they are placed in PRRs p0 through p5, in either
DWC or TMR mode. At time t6 there are enough unused
PRRs in the system for a DWC task, but because the resources
are not contiguous the task cannot be placed. Unfortunately,
the simplistic EDF scheduling heuristic currently in use does
not account for FPGA fragmentation. The low effectiveness
of the adaptive metric in Figure 3 can be explained by this
FPGA fragmentation. By using a placement-aware scheduler,
the adaptive heuristic should perform closer to optimal for all
fault rates. For example, delaying the placement of task FDWC

for until t6 would enable a more compact placement in PRRs
p2 and p3, enabling space for the placement of an additional
DWC task. Alternatively, task FDWC could be placed in PRRs
p4 and p5 at time t5, leaving room for future DWC tasks
in PRRs p2 and p3. An FPGA placement-aware scheduling
algorithm such as the Horizon or Stuffing scheduler [13]
should be incorporated in order to improve the performance
of the adaptive heuristic.

Fault-rate lag is another possible problem. If a task is
scheduled using a specific mode but does not execute for a
long period of time, a different FT mode may become more
appropriate. Limiting the scheduling window to only schedule
a few tasks at a time may prevent this lag. Alternatively, using
a prediction of the future fault rate during scheduling may
reduce this effect. Finally, preemption enables the scheduler
to return a currently running task to the task queue in order to
start a higher priority task. By adding preemption capabilities
to the scheduler, the guarantee ratio of all the tested metrics
can be improved.

VI. CONCLUSIONS

In this work, we present a novel heuristic for determin-
ing optimal fault-tolerance settings for reconfigurable fault-
tolerant systems. The heuristic determines the fault-tolerance
mode for each task that will minimize system resources and
task computation time in the presence of faults. An RFT
scheduler and simulator were developed in order to test
the effectiveness of the adaptive scheduling heuristic and to
compare its performance to traditional static fault-tolerance
strategies. When using our adaptive FT strategy in Burst-
like fault environments, we maintain system reliability while



reducing the number of rejected tasks by 48% compared to
a static TMR fault-tolerance strategy and 11% compared to
static DWC. In the Sinusoidal case study, the static DWC,
Ideal, adaptive heuristics reduce the number of rejected tasks
by 94% compare to static TMR strategy. We have demonstrated
that the adaptive heuristic performs similarly to an optimal
user-defined threshold, without the need for detailed system
simulation and measurement. Future work will combine the
adaptive heuristic with a placement-aware task scheduler to
further improve performance.
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