
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1

A Framework for Evaluating High-Level Design
Methodologies for High-Performance

Reconfigurable Computers
Esam El-Araby, Member IEEE, Saumil G. Merchant, Member IEEE,

and Tarek El-Ghazawi, Senior Member, IEEE

Abstract— High-performance reconfigurable computers have potential to provide substantial performance improvements over
traditional supercomputers. Their acceptance, however, has been hindered by productivity challenges arising from increased
design complexity, a wide array of custom design languages and tools, and often overblown sales literature. This paper
presents a review and taxonomy of High-Level Languages (HLLs) and a framework for the comparative analysis of their
features. It also introduces new metrics and a model based on computational effort. The proposed concepts are inspired by
Netwon’s equations of motion and the notion of work and power in an abstract multi-dimensional space of design specifications.
The metrics are devised to highlight two aspects of the design process; the total time-to-solution and the efficient utilization of
user and computing resources at discrete time steps along the development path. The study involves analytical and
experimental evaluations demonstrating the applicability of the proposed model.

Index Terms— High-level language productivity, performance evaluation, productivity, reconfigurable computing.

—————————— ——————————

1 INTRODUCTION

ROGRAMMABILITY challenges with high-
performance reconfigurable computers (HPRCs) have
hindered their wide spread acceptance amongst the

supercomputing community. Application development
on these systems typically requires software and
hardware programming expertise for which design
paradigms and tools have been traditionally separate.
The standard way of describing software is using high-
level languages (HLLs), such as C, C++, or Fortran,
whereas, hardware is typically designed using hardware
description languages (HDLs), such as VHDL and
Verilog. Fragmented design flow and the need for
expertise in parallel software and hardware design are
major productivity hurdles facing the high-performance
reconfigurable computers. To bridge the productivity
gap several high-level language tools such as Xilinx
Forge, Celoxica Handel-C, Impulse-C, and Mitrion-C
have been proposed which attempt to abstract underlying
hardware design details and streamline the disparate
design flows. These tools often tradeoff performance for
programmability. Dataflow design tools, based on the
graphical user interface, e.g. DSPLogic, seem to offer an
interesting compromise between HLLs and HDLs. These
languages offer a trade-off between a shorter
development time and a performance overhead imposed
by high level languages.

Streamlining hardware description using HLLs typically
used in software programming, or at least using dataflow

languages, is a major and distinctive feature of HPRCs
that potentially allows domain scientists to develop entire
applications without relying on hardware designers.
However, an HLL compiler for HPRCs must combine the
capabilities of tools for traditional microprocessor
compilation and tools for computer-aided design with
FPGAs. It must also extend these two separate set of tools
with capabilities for mutual synchronization and data
transfer between microprocessors and reconfigurable
processor sub-systems [1, 2]. The problems are further
escalated by lack of standard interfaces and architectural
diversity in reconfigurable computing sub-systems.
Moreover, the range of tool choices and puffed up sales
literature make it hard to comprehend real differences.

This paper aims to present a framework and a
mathematical model to compare and contrast different
HLL languages and their features. For this a detailed
review and a taxonomy of the existing design languages
for HPRCs is provided. The model and the metrics to
evaluate HLLs are inspired from the principles of
Newton’s equations of motion and the notions of work
and power in an abstract multi-dimensional space of
design specifications. They highlight two distinct aspects
of the development process, (i) the total time-to-solution,
and (ii) the efficient utilization of user and computing
resources. We believe that this enables a comprehensive
evaluation of the design languages. The experimental
study presented includes HLLs from the imperative and
the dataflow programming paradigms, showcasing the
wide applicability of our methodology. In brief, the major
contributions of this work are as follows: (i) A detailed
review and taxonomy of HLL languages; (ii) New
evaluation metrics to emphasize the total time to solution

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
Manuscript received October 1, 2009.
Esam El-Araby, Saumil Merchant, and Tarek El-Ghazawi are with the NSF
Center for High-performance Reconfigurable Computing (CHREC), ECE
Department, The George Washington University, Washington, DC 20052.
E-mail: esam@gwmail.gwu.edu, {smerchan, tarek}@gwu.edu.

P

Digital Object Indentifier 10.1109/TPDS.2010.67 1045-9219/10/$26.00 © 2010 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

as well as the resource usage efficiency of an HLL
tool/language along the development path; and (iii) An
analytical framework for comparative analyses of HLL
languages.

Remainder of this manuscript is organized as follows.
Section 2 presents a detailed review and taxonomy of
HLL design tools for HPRCs. Section 3 presents the
related work. Section 4 introduces the model and the
framework to evaluate and compare HLLs. Section 5
presents an experimental study that uses the proposed
framework to evaluate HLLs from imperative and
dataflow programming styles. Finally, section 6 concludes
the paper.

2 HLL REVIEW AND TAXONOMY

To understand and evaluate the different language
attributes, taxonomy is imperative. This section provides
a thorough review and taxonomy of available HLL tools
in research and commercial literature. Table 1 shows a list
of HLLs reviewed. Some of the listed languages are text-
based, either C-, Fortran-, Java-, or Matlab-like, others are
Graphical-based.

Our review revealed that various vendors provide not
only a high-level language, but also a complete
development environment that may integrate with the
tools of the basic development flow, see Fig. 1. Users can
develop their applications using either the standard HDL
flow or a suite of higher-level languages such as C and
C++ or the Xilinx System Generator for DSP package.

Impulse Accelerated Technologies, for example,
provides a C-based development kit, Impulse-C, that
allows the users to program their applications in standard
C with the aid of a library of functions for describing

parallel processes, partitioning the application into
software and hardware parts, and simulating and
instrumenting the application. The Impulse-C
programming model provides stream-based
communication between processes. The kit provides a
compiler that generates HDL code for synthesis from the
hardware parts of the application targeting different
HPRC platforms such as Cray-XD1 and/or SGI
Altix/RASC [3, 4]. Impulse-C represents a class of
imperative languages with syntax based strongly on
ANSI C [5]. The language is extended to address specific
hardware concepts such as communicating sequential
processes (CSP) and streams. Existing VHDL designs may
also be incorporated and called from the Impulse-C code
as external functions.

Celoxica provides a C-based hardware design
language, Handel-C, and the DK Design Suite that can be
customized for specific HPRC platforms such as the Cray-
XD1 and/or SGI Altix/RASC systems [3, 4]. DK Design
Suite unifies system verification, hardware/software
codesign, and Handel-C synthesis in a GUI-based

TABLE 1. REVIEWED HLLS

Fig. 1. Development flow of high-level tools [3].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

3

development environment. The customization includes a
Platform Support Library (PSL), which includes Handel-
C interfaces to the underlying HPRC platform [6].

Mitrionics provides a C-based hardware design
language, Mitrion-C, and an abstract machine, the
Mitrion Virtual Processor (MVP), which allows the users
to develop portable high-level code for FPGA
applications. The Mitrion architecture uses a data-driven
representation of the program, which the tools map onto
programmable logic. Mitrion-C is an ANSI C-based
functional language. Mitrion-C programming language is
an implicitly parallel programming language with syntax
similar to C. The language centers on parallelism and
data-dependencies. In contrast, traditional languages are
sequential and center on order-of-execution. In Mitrion-C
there is no order-of-execution; any operation may be
executed as soon as its data-dependencies are fulfilled.
Mitrion-C is a Single-Assignment language (variables
may only be assigned once in a scope) in order to prevent
variables from having different values within the same
scope. Software written in the Mitrion-C programming
language is compiled into a configuration of the MVP.
The Mitrion Virtual Processor is a fine-grain, massively
parallel, reconfigurable soft-core processor [7].

The Xilinx System Generator (SysGen) for DSP tool
uses a somewhat different approach for designing digital
signal processing (DSP) blocks. It integrates with the
MATLAB and Simulink packages from MathWorks to
allow users to design the algorithmic block of their
applications in the MATLAB GUI environment [8].

DSPlogic provides the Rapid Reconfigurable
Computing Development Kit (RC Toolbox), which
integrates with MATLAB and Simulink from MathWorks
and with Xilinx tools. It allows users to design, verify,
and build the FPGA logic for DSP applications entirely
within the MATLAB/Simulink environment. The tool
also includes the Reconfigurable Computing I/O (RCIO)
library, which provides a portable application
programming interface for communications between the
software application that runs on the host processor(s)
and the attached FPGAs. DSPLogic RC Toolbox is a

combined graphical and text-based programming
environment for HPRC application development. Blocks
from the DSPlogic RC blockset and Xilinx System
Generator are used to create a data flow diagram.
Existing VHDL designs may also be incorporated using
System Generator’s HDL co-simulation capabilities [9].

The Carte-C (Carte-Fortran) development environment
is somewhat different from the above mentioned flows in
the sense that it is tightly integrated with SRC systems. It
is a C-based (Fortran- based) environment that allows the
users to program their applications in standard C
(Fortran) with the aid of a library of pre-synthesized
hardware functions. There are two types of application
source files to be compiled, one that targets the
microprocessor and another that targets the
reconfigurable processor. Since users often wish to extend
the built-in set of operators, the compiler allows users to
integrate their own VHDL/Verilog macros. The
environment also provides a means for debugging and
verification [10].

2.1 HLL Tool Taxonomy
After reviewing the literature of HLLs, we recognized the
need for a taxonomy of their programming models that
would provide a useful means for the characterization of
the differences among them. Fig. 2 shows our taxonomy
of the programming models of the different HLLs. The
programming model can be defined as the hardware
abstract view presented to the programmer by the
programming tool. Thus, a programming model defines
which parts of the hardware architecture will become
visible to the programmer and be under his/her direct
control.

In general, HLLs can be categorized as either
imperative or dataflow programming paradigms. This is
mainly dependent on how parallelism is expressed
and/or extracted. In imperative paradigms parallelism is
non-native and expressed in an explicit manner which is
solely the user’s responsibility. In other words, in
imperative languages, everything is sequential unless

Fig. 2. Taxonomy of HLL programming models

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

otherwise stated. On the other hand, in dataflow
paradigms parallelism is native and expressed in an
implicit manner which is hidden from the user. In other
words, in dataflow languages, everything is parallel
unless otherwise stated.

Dataflow paradigms, as shown in Fig. 2, can be further
divided into two subcategories, namely functional and
graphical paradigms. Functional languages are basically
the text-based versions of dataflow paradigms as opposed
to the graphical version. In general, functional HLLs are
characterized as being single-assignment languages. In
light of this, HDLs, i.e. VHDL and/or Verilog, fall under
this category. Examples of this family are Mitrion-C, SA-
C, etc. Examples of graphical dataflow languages include
SysGen, DSPLogic, CoreFire, Viva, etc.

Imperative paradigms, on the other hand, include
languages such as Streams-C, Impulse-C, Handel-C,
Carte-C, etc. However, because parallelism is nonnative,
locality awareness and communication style, from an
HPC perspective, become issues that are difficult to
express in imperative paradigms. These issues are
resolved by either the introduction of new extensions to
the language, as in the case of Handel-C, or by the
insertion of compiler directives/pragmas, as in the case of
Impulse-C and Carte-C. In addition, concepts such as
Message Passing (MP), Communication Sequential
Processes (CSP), Global Address Space (GAS), and
Partitioned Global Address Space (PGAS), are commonly
found among the plethora of languages that fall under
imperative paradigms. Fig. 2 shows how those languages
deal with communication issues as well as with locality
awareness. For example, languages such as Streams-C
and Impulse-C provide a 2-sided, i.e. send-and-receive,
communication style and also show an awareness of data
locality through the MP/CSP model. The MP/CSP
model is also supported by Carte-C and Handel-C. In
addition, the GAS and/or PGAS models are also
implicitly enabled by Carte-C and other languages, but
not explicitly supported.

3 RELATED WORK

The objective of this work is to formalize a statistical
framework to evaluate various HLL features/attributes to
characterize and compare different high-level design
languages/methodologies. To achieve this objective our
approach is based on leveraging previous work and
concepts that were introduced, and proved useful to us,
in similar investigations. For example, Holland [11]
reviewed some C-based HLLs and highlighted some of
the differences among them. Similarly, Edwards [12]
discussed the challenges of synthesizing hardware from
C-like languages. Finally, our previous work [13, 14]
provided a formal and empirical comparative analysis of
HLLs along with experimental work conducted on Cray-
XD1. The work presented here significantly extends the
model in [13, 14] and leverages some of its terminology
and concepts. It enables evaluation of language features
as well as experimental metrics, both of which are termed
as attributes in the model. Furthermore, in our
investigation the elimination of biasing effects has been
formalized based on statistical analysis and validation.

In our study we considered productivity as one of the
evaluation metrics. The definition and model of
productivity have been widely discussed in literature. For
example, Sterling [15] in his “Special Theory of
Productivity" defines it as utility divided by time, where
utility being the useful work, e.g. operations. While Snir
and Bader [16] defined productivity of a system as the
time dependent utility of the answers it produces divided
by the total lifetime cost. Kennedy et. al. [17] definition is
tailored towards tool expressiveness and efficiency.
Abstract expressiveness determines the programming
tool development power and computational efficiency is
the programming tool execution efficiency. Kepner [18,
19] combines all of the above ideas into a single synthesis
formulation. In addition, Numrich [20] presents his
generic performance metric based on computational
action. He examines work as it evolves in time and
computes computational action as the integral of the
work function over time.

Fig. 3. HLLs as observations in the feature space.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

5

 Our work leverages and builds off concepts from
Numrich’s research on performance and productivity
metrics based on the principle of computational least
action [20-24]. The metrics proposed here emphasize the
rate of this computational work/effort. We call this rate
as the work progress rate. Computational work or effort
is the work done by the user-tool combination in
traversing an abstract specifications space. As it will be
shown later, the productivity metric emphasizing the
total time-to-solution is a special case of this new metric.

4 HLL EVALUATION FRAMEWORK

4.1 Formalizing the Framework
We start our formalization by visualizing the different
HLLs as being observations of a space of attributes.
These attributes can be either qualitative language
features such as support for pointers and debugging
capability, or experimental metrics such as development
time and productivity. Therefore, in this multi-
dimensional space of attributes each language can be
considered as a single point or as an observation of that

space. For example, Fig. 3 shows a case where this space
has been hypothetically reduced to a two-dimensional
space of, collectively, two orthogonal sets of attributes,
namely software features and hardware features.
Therefore, the evaluation of the different HLLs can be
simply performed by comparing the different
components along the dimensions of that space, e.g.
feature coverage and/or feature loss. Fig. 3 shows a
pictorial comparison of two hypothetical HLLs with
different degrees of feature coverage and/or loss.

It is worth mentioning that in developing our
framework we needed to minimize certain biasing effects
associated with small sample sizes. For example, biasing
effects may include previous user experience and
knowledge of a specific language and/or design
methodology. Therefore, we formalized our framework
by instrumenting a normalization mechanism through
which each user is required to provide three different
observations of the same trial (application). In other
words, each user develops the same application in three
different implementations (languages). The first
implementation is performed using the language under

(4a) Preliminary attribute/feature matrices
(4a) Preliminary attribute/feature matrices

(4b) Final attribute/feature matrix
Fig. 4. Formalizing the scoring mechanism

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

consideration, while the other two are performed using
both pure software, e.g. in C/C++, and pure hardware,
e.g. in VHDL/Verilog. These two other observations
(implementations and/or languages) serve as extreme
reference points that can minimize the biasing effects of
user experience and knowledge of a given language. In
other words, each user observation for a certain trial is
normalized to his/her own experience making the
observations more language-specific rather than being
user-specific measurements. Fig. 4 summarizes the steps
involved in our formal methodology for conducting the
experimental work. Fig. 4(a) shows the preliminary
formulation of attribute matrices leading to the final
attribute matrix shown in Fig. 4(b). Each row in the final
attributes matrix represents an observation (language)
projected in the multi-dimensional space of
attributes/features.

Based on the above discussion, we introduce the
following notations in order to quantify our concepts:

Nf is the total number of attributes/features, i.e. the
dimension of the attribute space
Nl is the total number of languages
Nu is the total number of independent users involved
in the experiments
Na is the total number of applications developed by
each user, i.e. the number of trials of the attribute
space for each user
va,u,l,f is the value of attribute f for language l as
observed by user u when developing application a
vmina,u,l,f is the minimum value of attribute f for
reference language l0 as observed by user u when
developing application a

flua

N

lflua vv
l

,,,1

min
,,, min

0
(1)

vmaxa,u,l,f is the maximum value of attribute f for
reference language l1 as observed by user u when
developing application a

flua

N

lflua vv
l

,,,1

max
,,, max

1
(2)

sa,u,l,f is the normalized value of attribute f for
language l, with respect to reference language l0
and language l1, as observed by user u when
developing application a

min
,,,

max
,,,

min
,,,,,,

,,,
01

0

fluaflua

fluaflua
flua vv

vv
s (3)

su,l,f is the average normalized value of attribute f
for language l, with respect to reference language
l0 and language l1, as observed by user u across all
trials (applications), i.e. the average space
observation for each user

aa N

a fluaflua

fluaflua

a

N

a
flua

a
flu vv

vv
N

s
N

s
1

min
,,,

max
,,,

min
,,,,,,

1
,,,,,

01

011
(4)

sl,f is the average normalized value of attribute f for
language l, with respect to reference language l0
and language l1, as observed by all users across all
trials (applications), i.e. the average space
observation for all users

],1[,],1[,],1[,],1[

1

1

1 1
min

,,,
max

,,,

min
,,,,,,

,

1
,,,

01

0

flua

N

u

N

a fluaflua

fluaflua

au
fl

N

u
flu

u
fl

NfNlNuNa
where

vv
vv

NN
s

s
N

s

u a

u

(5)

4.2 Validating the Framework
We statistically validated the fairness of our
framework by applying our formulation to the
evaluation metrics (attributes), i.e. ease-of-use and
efficiency, as proposed and defined in [13]. This
validation was performed by the replacement of all
entries in the preliminary attribute matrices, i.e.
attribute value va,u,l,f, with independent and identically
distributed random variables. The random variables
were uniformly distributed. After applying our
framework through equations (1-5), we compared the
theoretical expected values of the metrics of evaluation
with the observed values. We found those to be almost
identical. Furthermore, the variance of the data points
was measured to be minimum and consistent with the
theoretical expectations, see Fig. 5. In other words, the
different hypothetical languages (observations) in the
attribute space were closely clustered with minimum
relative dispersion around the expected value. This
proved to us the fairness of the proposed framework
as well as the minimization of biasing effects towards
certain languages over others. Fig. 5 shows our
findings with this respect. One can also note the
relative placement of the reference languages as two
extremes.

4.3 Metrics of Evaluation
Having established those top-level guidelines for the
framework, different design methodologies, as
mentioned earlier, can be evaluated by comparing their
components along the dimensions of the attribute space.
In order to calculate each attribute (metric) value for a
particular methodology, the design process needs to be
analyzed in more details. Adopting a black box
approach, design methodologies and their

Fig. 5. Validation of the formal framework.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

7

corresponding tools/languages need a quantitative
representation of their inputs and the corresponding
outcome. Inputs can be represented as a set of
requirements/specifications, and a corresponding set
of preferences/weights adjustable along the design
process. Outputs can be represented as a set of
solutions where the target solution would be the
preferred input specifications, see Fig. 6. In other
words, given a set of specifications, S = {power,
resources, speed, etc.}, with their allowable ranges, Smin
= {minimum power, minimum resources, minimum speed,
etc.} and Smax = {maximum power, maximum resources,
maximum speed, etc.}, and also given their
corresponding weights or preference W = {power
weight, resources weight, speed weight, etc.}, the goal is to
achieve a target set of specifications, Starget = {target
power, target resource utilization, target frequency, etc.}.
More formally, this can be represented as a multi-
dimensional space of specifications whose basis can be
described by the following vector representation:

space (solution)ionspecificat theoflity Dimensiona

...

,...,
...

,
...

,
...

2

1

2

1

arg
2

1

max
2

1

min
2

1

arg

arg

arg

max

max

max

min

min

min

N
where

w

w
w

W

s

s
s

S

s

s
s

S

s

s
s

S

s

s
s

S

N

N

ett

NNN ett

ett

ett

(6)

Due to the different scales and units for each
component of the specification vector, a normalized and
unitless representation of the space is desirable.
Therefore, a mapping function is needed to establish the
correspondence relation between the original space and
the normalized space. The mapping is done such that
more desirable solutions always have higher coordinates
in the normalized space, see equation (7). The design
problem becomes now a search process for the target
solution. For specifications that need to be maximized,
e.g. frequency, search in the normalized space moves in
the same direction as in the original space. For
specifications that need to be minimized, e.g. area
and/or power, search in the normalized space moves
in the opposite direction to that in the original space,
see Fig. 7. It can be seen in Fig. 7 that the most
desirable solution, i.e. optimal solution with respect to
the given range of specifications, is located at the
positive extreme of the normalized space.

Based on this representation, design
methodologies/tools can be evaluated by analyzing the

time evolution of the search path towards the target
solution. Different methodologies differ in the selection of
the search path, i.e. location of candidate solutions in the
search space. They also differ in the manner through
which the search path is being time sampled, i.e. total
number of iterations and/or the candidate solutions, M,
along the search path. In other words, any given design
methodology can be characterized by the instantaneous
progress of the search path as a function of time. Under
this representation, several useful quantities can be
defined and used in studying the design process. More
specifically, the target vector, Tk, at time sample
(iteration) k, can be defined as the distance from a given
candidate solution, Xk, to the target solution, Xtarget. Tk
measures the closeness of a given candidate solution to
the final target solution. Also, displacement vector, Dk, at
time sample (iteration) k, which is the shift between
consecutive candidates in the solution space measures the

Fig. 6. Black box representation of design methodologies.

space normalized in theector position vSolution

...,
......,

...

,....,2,1,
minimized be to,

maximized be to,

,....,2,1,
minimized be to,

maximized be to,

arg

arg

arg

minmax

minmax

minmax

max

minmax

min

2

1

arg
2

1

2

1

2

1

X

where

x

x
x

XW

w

w
w

x

x
x

X

x

x
x

X

Ni
s

ss
s

w

s
ss

s
w

x

Ni
s

ss
ss

w

s
ss

ss
w

x

ett

ett

ett

optimal

optimal

optimal

N

ett

NN

optimal

N

i
ii

i
i

i
ii

i
i

i

i
ii

ii
i

i
ii

ii
i

i

(7)

Fig. 7. Space for the design problem (solution search-process)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

distance traversed along the search path from a candidate
solution to the following one. Moreover, sensitivity, k, at
time sample (iteration) k, defined as the shift between
consecutive candidate solutions in the direction of the
target solution, i.e. the projection of Dk onto Tk, represents
a measure for the convergence towards the target
solution. k is the angle of projection or the angle of
deviation of the tool away from the target. Additionally,
the velocity vector, k, at time sample (iteration) k,
represents the instantaneous traversal speed along the
search path from a candidate solution to the following
one. The definitions of these quantities are given in
equation (8) and shown in Fig. 8.

AAA

BABA

where

Xand

Mk

D
T

TD

T

TD

XXD

XXT

tttTT

tDDtXX

kk
k

kk

k

kk
k

kkk

kettk

kkkkkk

kkkk

 vector ofLength

 and vectorsofproduct Dot

0,

0,

)cos(

)(,)(,)(

)(,)(

0

1

arg

,,,

,,

(8)

Fig. 8. Time evolution of the search path
Finally, it is essential to consider two activities that

are typically associated with the design process,
namely the user activity and the tool activity. These
two activities are disjoint and mutually exclusive in
time (consecutive activities), however, they are

dependent. The design process typically starts with a
user activity, i.e. initial design given to the tool, and
ends with a tool activity after which the target solution
at minimum is reached, see Fig. 8. The design process
alternates (iterates) between the two exclusive
activities, see Fig. 9. The user activity can be viewed as
corrective to the tool deviations away from the target
solution. Therefore, if we assume that tM is the total
development time, tk represents the time spent after k
iterations, tk is the time period between two
consecutive iterations, the expression given by
equation (9) can be used to describe the timeline of the
user and tool activities. It can be seen in Fig. 9 that tk
is the summation of the time spent by the user tkuser
and the time spent by the tool tktool to generate the
outputs of iteration k. Note that the shaded and un-
shaded regions in Fig. 9 represent respectively the
active and idle time periods for either the user or the
tool.

user
kkk

tool
kk

tool
k

user
kkkkk

ttt

where

Mktttttttt

,

,
1 0, (9)

4.3.1 Productivity
Productivity, , is usually defined as utility, U, per
cost, C as shown in equation (10) [15-22].

C
U

(10)

Utility is typically a function of achieved design
objectives such as performance, power, and area, etc.
Cost is the development cost expressed in either
development time or proportional time equivalents
such as man-hours, dollars etc. When the total
development time, tM, is considered as the cost,
productivity gives a measure of how fast a desired
solution was obtained which can be expressed as
follows:

ett
M

ett

M t
X

t
T

C
U

arg
arg0 (11)

Relative productivity of two methodologies is the ratio
of individual productivities. Thus for two
methodologies attaining the same design objectives the
relative productivity is the inverse ratio of their
development costs, see equation (12).

1

2

1

2

2

1
2/1

M

M

t
t

C
C

(12)

Fig. 9. Activities of the design process

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

9

Also, based on this metric two methodologies
achieving the same design objectives with same
development costs have the same productivity.
Although this is a logical inference, the metric has no
notion of the user effort, tool maturity, or resource
utilization efficiency during the development process.
Two tools could have taken two completely different
paths in the objective search space to reach the target
in the same amount of time, and have different levels
of user involvement, design iterations, tool algorithm
complexities, and compute resource requirements.
The productivity metric based on time-to-solution
cannot capture these facets of development process.
Hence evaluating methodologies based on solely the
productivity metric is incomplete at best. To address
this we present a new metric, i.e. work progress rate, as
defined below.

4.3.2 Work Progress Rate
The purpose of work progress rate metric is to capture
the efficiency of resource utilization, by the user and
the tool combined, at discrete time steps along the
search path progressing towards the target
specifications. The metric draws from the principles of
classical mechanics based on Newton’s laws of motion.
It evaluates the computational effort exerted by the
user and the tool in moving towards the target
specifications along the search path in the specification
space. Based on the fact that the user and the tool
computational efforts are mutually exclusive activities
as discussed earlier, the instantaneous computational
effort, Ek, in any given time period tk of iteration k,
can be expressed as a vector with two components.
The two components are the user effort, Ekuser, and the
tool effort, Ektool, as shown in equation (13).

tool
k

user
k

k E
E

E (13)

The instantaneous work progress rate, k, in any given
time period tk is the rate of exerting computational effort
in order to move along the search path in that time
period. It is also a vector with two components, the user
work progress rate, kuser, and the tool work progress rate,

ktool, as shown in equations (14a) and (14b).

tool
k

tool
k

tool
k

tool
ktool

kuser
k

user
k

user
k

user
kuser

k

tool
ktool

k

tool
k

user
kuser

k

user
k

tool
k

tool
k

tool
k

user
k

user
k

user
k

k

tool
ktool

k

user
k

tool
k

user
ktool

k

user
k

user
k

k

tool
ktool

k

kuser
kuser

k

k
k

k

k

k

k
tool
k

user
k

k

t
E

dt
dEand

t
E

dt
dE

t
dt
dE

t
dt
dE

t
dt
dEtdt

dE
E

t
E
E

t
t

E
E

t
E

t
t
Et

t
EE

t
E

dt
Ed

,

0

0

(14a)

(14b)

The overall work progress rate, , can be defined as the

statistical average of the instantaneous rates across all
iterations along the search path in the specifications
space. This can be described as shown in equation (15).

1

0

1

0

1

0

1

0

1

1

11

M

k
tool
k

tool
k

M

k
user
k

user
k

tool

user

M

k
tool
k

tool
k

user
k

user
k

M

k
k

t
E

M

t
E

M

t
E
t

E

MM

(15)

Based on equation (15), two methodologies
achieving the same design objectives, in equal amount
of time, along different paths and across different
number of iterations can have different work progress
rates even though their productivities as given by
equation (11), will be the same. This depends on the
user and tool computational efforts along the search
path. Thus, the work progress rate metric allows us to
compare two methodologies not only based on how
fast the target objectives were achieved, but how
efficiently the resources were used along the way to
achieve the target objectives.

It is necessary at this point to analyze and model the
computational efforts exerted by both the user and the
tool. In our model we leverage the concept of
computational force as introduced and defined by
Numrich [23, 24]. We will also define the
computational effort as the work, as defined in
classical mechanics, done by a force field to move an
object between two positions in a given space.

In our model, the user, at any given time period tk
of iteration k, expends effort at the beginning of the
iteration to maximize the displacement in the
specifications space towards the target solution. Hence
the computational effort expended by the user can be
modeled by the work done by the user to push the tool
to move from a given position (candidate solution), Xk,
in the specifications space to the next position, Xk+1.
Because the target solution is always known to the
user at any point of time, the user’s computational
force is assumed to be pointing towards the target
position. In other words, the computational force,
Fkuser, applied by the user is an impact force used to
give the initial push to the tool to move in the
specifications space and is aligned with the direction of
the current target vector, Tk. This is shown in Fig. 10
and expressed in equation (16). Similarly, the
computational effort expended by the tool is the work
done by the tool to cause the displacement Dk in the
specifications space, see Fig. 10 and equation (17). The
reader is reminded of the fact that the user and tool
computational efforts, although being mutually
dependent, are time exclusive activities and hence
their computational forces cannot be used
simultaneously to describe the dynamics of motion in
the solution space, see equations (16) and (17). More
specifically, the user, during the time interval tkuser,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

exerts an effort only through his/her own
computational force, Fkuser, in the direction of the target
vector, Tk. After that time interval the tool receives an
initial impact velocity, 0ktool, from the user and starts
searching the space for a duration of tktool. It is
assumed that the user starts his activity from rest, i.e.
zero velocity, and continues his activity until he
reaches a final velocity, kuser, after a time interval of

tkuser. It is also assumed the user final velocity is
transferred to the tool as an initial velocity, 0ktool, in a
perfectly inelastic collision/impact. These dynamics
are described through the equations of motion (18) and
(19).

k
user

kk
user

k
user
k TFTFE (16)

kk
tool

kk
tool

k
tool
k DFDFE cos (17)

 resistance inertial suser' The

0

user

user
k

kuser
kuser

user
kuser

k

user
k

user
kuseruser

k

user
k

user
k

user
kuser

user
k

user
kuser

user
k

user
kuseruser

k

m

where
t
Tt

m
F

t
mF

t
m

t
m

dt
dmF

(18)

resistance inertial s tool'The

user by the expendedeffort
nalcomputatio todue vector

 target theofdirection the
in velocity toolinitial The0

0

0

tool

k

user
k

kuser
k

tool
k

tool
ktool

tool
ktool

k
tool
k

tool
k

tool
k

tool
ktool

tool
k

tool
ktool

tool
k

tool
ktooltool

k

m

T

t
T

where

t
m
F

t
m

t
m

dt
dmF

(19)

The instantaneous work progress rate can now be
given as:

tool
k

tool
k

user
k

user
k

tool
k

k
tool

k

user
k

k
user

k

tool
k

tool
k

user
k

user
k

tool
k

user
k

k
F

F

t
DF

t
TF

t
E
t

E

(20)

It is worth mentioning that the user final velocity,
kuser, and hence the initial tool velocity, 0ktool, are

proportional to the user’s experience. For a given iteration
target, Tk, advanced users spend less time, tkuser, to debug
and redevelop/modify their designs than novice users
before they start their tools, see equations (18) and (19).
On the other hand, least experienced users spend long
periods of times, i.e. tkuser , with almost no guidance
or corrective efforts to the tool, i.e. 0ktool = kuser =0 and

kuser=0, see equations (19) and (20).

As mentioned earlier, the user effort is always
corrective to the tool effort. Therefore, it is desirable at
this point to investigate the divergent behavior of the
tool from that of the user’s away from the target
solution. In other words, it is essential to calculate the
initial direction, k, of the tool computational force
with respect to the final displacement vector, Dk, see
Fig. 10. k represents the angle with which the tool
starts searching the space. Using equations (16)-(19)
and the geometrical properties shown in Fig. 10, the
following expression can be derived for calculating k:

)cos(

21

1
)cos(

00

2

0

2

k
k

k

k

tool
k

tool
k

k

tool
k

tool
k

k

k

k

tool
k

tool
k

k

k

k

D

where

tt
D

t
D

(21)

Based on the proposed model, important
characteristics of the development process can be
understood by considering some special cases of equation
(21). For example, at any design iteration k, when there is
no initial push to the tool by the user, i.e. 0ktool =0 and

kuser=0, due to his/her lack of experience putting together
a good initial design/development, the tool is left on its
own searching the design space with k=0, see equation
(22a) and Fig. 10. This results in a random displacement,
Dk, the magnitude and direction of which are purely
dependent on the computational force of the tool and on
how efficient the tool is. On the other extreme, advanced
users tend to give the tool the maximum guidance and/or
corrective efforts, i.e. 0ktool , resulting in a pure
resistive behavior of the tool opposing the user effort, i.e.

k= - k, see equation (22b) and Fig. 10. Additionally, if
the sensitivity k, i.e. the distance traveled by the tool
towards the target solution, is solely due to the user’s first
push, i.e. (0ktool tktool), then the tool has not performed
any useful work and its computational force has been
orthogonal, i.e. k= /2 - k, to the target vector, see
equation (22c) and Fig. 10.

Fig. 10. User and tool computational forces.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

11

kk
t

kk

k

k

tool
k

tool
k

tool
k

tool
k

2
)(lim

)(lim

0)(lim

1

0

0

0

0

(22a)

(22b)

(22c)

5 EXPERIMENTAL EVALUATION

The framework was applied to evaluate the support
for qualitative language features of a subset of the
HLLs from our review list. A number of useful
language features are considered including behavioral
hierarchy, structural hierarchy, supported
architectures, degree of parallelism, locality
exploration, portability, and dynamic memory
allocation. The quantifying process is a simple scoring
system that ranks the degree of support of each HLL
tool for the specific qualitative language feature. The
scoring mechanism allows weighting, see equation
(23), to rate specific features higher according to
evaluator preferences. In our case we used equal
weights since we consider each of those features
equally with no particular preference. Fig. 11 plots the
final scores for the languages evaluated.

max
,,1

max

1

max

1
,

,0,max,,1

,,1,100

fflfl

N

lff

lN

f
ff

N

f
ffl

l

ssandssNf

Nlwhere
ws

ws
Score

l

f

f

(23)

For our experimental evaluation we selected the HLL
tools that scored the highest in this scoring mechanism.
We also considered representative high-level tools that

were selected to represent imperative, functional, and
graphical programming. The availability of these tools for
experimentation was also a factor in our selection. The
HLL tools selected for our experimental evaluation are
listed in Table 2.

Four workloads were selected for implementation
using the selected HLL tools. The first workload is a
simple pass-through implementation that reads input

Fig. 11. Degree of support for qualitative language features

TABLE 2. EXPERIMENTAL RESULTS

Fig. 12. HLL results plotted onto the specification space

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

from the P and sends it back unmodified. The
purpose of this simple application is to measure the
overhead caused by each tool on the FPGA with
respect to the area utilization and also to measure the
maximum clocking rates reached by each tool in the
simplest of applications. This will give an initial and
basic idea of the performance with each tool. The
second application implemented is a discrete wavelet
transform (DWT), [25, 26]. The third and fourth
applications implemented are the data encryption
standard (DES) and the DES breaking algorithms [27].
DWT and DES were selected as representative
workloads of communication-intensive applications
while DES breaker is a computational-intensive
workload.

In conducting our experiments, users, mainly
students and faculty members, with different levels of
experience and backgrounds in computer science,
computer engineering, and electrical engineering were
selected. As mentioned earlier, we developed our
framework such that certain biasing effects associated
with small sample sizes are minimized. For example,
biasing effects may include previous user experience
and knowledge of a specific language and/or design
methodology. Therefore, we formalized our
framework by instrumenting a normalization
mechanism through which each user is required to
provide three different observations of the same trial
(application). In other words, each user develops the
same application in three different design paradigms
(languages). The first of which is performed using the
language under consideration, while the other two are
performed using a pure software approach, e.g. in
C/C++, and a pure hardware approach, e.g. in
VHDL/Verilog. These two other observations serve as
extreme reference points that can minimize the biasing
effects of previous user programming experience
which can range from software-centric programming
experience to hardware-centric programming
experience. In other words, in our experiments each
user observation for a certain trial is normalized to
his/her own experience making the observations more
language-specific rather than being user-specific
measurements.

5.1 Results
Table 2 shows the final attribute matrix for the four
workloads implemented using the selected HLL tools.
The reference implementations in HDLs and C are also
included. The specifications space is assumed to be 2-
dimensional with area and frequency as the
specifications. Fig. 12 shows the frequency and area
utilization achieved by each tool plotted on the
normalized specification space. On the assumption
that each tool generated the result in a single iteration,
the work progress rate for each tool is equal to the
productivity, see equations (11) and (15). Fig. 13
presents the results projected onto the attribute space
while Fig. 14 plots the productivity of each tool.

We may observe from the experimental results that

imperative approaches proved to be the easiest to use
while performing reasonably and comparably with
standard HDL approaches. On the other hand, dataflow
approaches, both functional and graphical, proved to
achieve the high utility but were not as easy to use as
imperative counterparts. Pure functional approaches
proved to be the most difficult to use amongst the three
approaches. Moreover, HDL approaches achieve the
highest utility (close to optimal with this respect) but at
the expense of being the most difficult to use for
application developers. These observations are captured
in Figs. 12 and 13.

6 CONCLUSIONS

The work reported in this manuscript presents a
comprehensive review and taxonomy of HLL
languages for high-performance reconfigurable
computers. It also presents new metrics and a
framework for comparative evaluation of the HLLs.
The concepts and methodology are inspired from the
principles of Newtonian mechanics, which are applied
notionally to the movement of user and tool in an
abstract specifications space as they progress towards
the target solution. The performance of this user and
tool combination is evaluated based on two principle
criteria, (i) total time to solution, and (ii) incremental
progress rate encapsulating the combined user and
tool resource usage efficiency at discrete time steps
along the development path. The metrics that focus on
each criterion are the productivity and the work
progress rate respectively. The productivity metric

Fig. 13. HLL results plotted onto the attribute space.

Fig. 14. Productivity of evaluated HLL tools.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ESAM EL-ARABY ET AL.: A FRAMEWORK FOR EVALUATING HIGH-LEVEL DESIGN METHODOLOGIES FOR HIGH-PERFORMANCE RECONFIGURABLE
COMPUTERS

13

characterizes how fast the solution is obtained whereas
the work progress rate captures how efficiently a
solution is obtained. These metrics are used as
attributes in the overall framework. The HLL
evaluation framework presented provides a structure
that enables evaluation of qualitative language
features such as support for pointers and debugging
capability, as well as quantitative metrics such as
productivity and work progress rate. Our review and
experimental results showcase the applicability of our
methodology to a wide-array of languages from
imperative to dataflow programming models.

ACKNOWLEDGMENT
This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. IIP-
0706352.

REFERENCES
[1] W. Luk, N. Shirazi, and P.Y.K. Cheung, “Compilation Tools for Run-

time Reconfigurable Designs”, IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM 1997, pp. 56–65.

[2] K. Compton, and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software”, ACM Computing Surveys 34 (2) (2002) 171-210.

[3] Cray Inc., “Cray XD1TM FPGA Development (S-6400-14)”, 2006.
[4] Silicon Graphics, Inc., “Reconfigurable Application-Specific Computing

User’s Guide (007-4718-005)”, January 2007.
[5] Impulse C – “Impulse Accelerated Technologies” web site available at

http://www.impulsec.com/
[6] Celoxica, Inc., web site available at http://www.celoxica.com
[7] Mitrionics web site available at http://www.mitrion.com/index.shtml
[8] Xilinx Inc., web site available at

http://www.xilinx.com/ise/optional_prod/system_generator.htm
[9] DSPLogic web site available at http://www.dsplogic.com
[10] SRC Computers, Inc., “SRC CarteTM C Programming Environment

v2.2 Guide (SRC-007-18)”, August 2006.
[11] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and A.D.

George, "Survey of C-based Application Mapping Tools for
Reconfigurable Computing", 2005 MAPLD International Conference,
Washington, DC, USA, September, 2005.

[12] S.A. Edwards, “The Challenges of Synthesizing Hardware from C-Like
Languages”, IEEE Design & Test of Computers, Vol. 23, Issue 5, pp. 375 -
386, September 2006.

[13] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, and G. B. Newby,
“Comparative Analysis of High Level Programming for
Reconfigurable Computers: Methodology and Empirical Study”, III
Southern Conference on Programmable Logic (SPL2007), Mar del Plata,
Argentina, February, 2007.

[14] E. El-Araby, P. Nosum, and T. El-Ghazawi, “Productivity of High-Level
Languages on Reconfigurable Computers: An HPC Perspective”, IEEE
International Conference on Field-Programmable Technology (FPT 2007),
Japan, December, 2007.

[15] T. Sterling, "Productivity Metrics and Models for High Performance
Computing", International Journal of High Performance Computing
Applications, vol. 18, pp. 433-440, 2004.

[16] M. Snir and D. A. Bader, "A Framework for Measuring Supercomputer
Productivity", International Journal of High Performance Computing

Applications, vol. 18, pp. 417-432, 2004.
[17] K. Kennedy, C. Koelbel and R. Schreiber, "Defining and Measuring the

Productivity of Programming Languages", International Journal of High
Performance Computing Applications, vol. 18, pp. 441-448, 2004.

[18] J. Kepner, "HPC Productivity: An Overarching View", International
Journal of High Performance Computing Applications, vol. 18, pp. 393-397,
2004.

[19] J. Kepner, "High Performance Computing Productivity Model
Synthesis", International Journal of High Performance Computing
Applications, vol. 18, pp. 505-516, 2004.

[20] R.W. Numrich, “Performance Metrics Based on Computational
Action”, International Journal of High Performance Computing Applications,
Vol. 18, No. 4, pp. 449 - 458, November 2004.

[21] R.W. Numrich, “A Metric Space for Computer Programs and The
Principle of Computational Least Action”, The Journal of Supercomputing,
Vol. 43, No. 3, pp. 281-298, March 2008.

[22] R.W. Numrich, L. Hochstein, V. Basili, “A Metric Space for Productivity
Measurement in Software Development”, Proceedings of the Second
International Workshop on Software Engineering for High Performance
Computing System Applications (SE-HPCS’05), St. Louis, Missouri, 15
May 2005.

[23] R.W. Numrich, “Computational Force: A Unifying Concept for
Scalability Analysis”, Advances in Parallel Computing, Volume 15, ISSN
0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

[24] R.W. Numrich, “Computational Force, Mass and Energy”, International
Journal of Modern Physics C, Vol. 8, No. 3, pp. 437-457, 1997.

[25] E. El-Araby, M. Taher, T. El-Ghazawi, and J. Le Moigne, “Remote
Sensing and High Performance Reconfigurable Computing Systems”,
in High Performance Computing in Remote Sensing, Editors A. J. Plaza, C.I.
Chang, Volume 16, New York, Chapman & Hall/CRC Computer &
Information Science Series, 2007, pps. 496. ISBN: 9781584886624, ISBN
10: 1584886625.

[26] E. El-Araby, T. El-Ghazawi, J. Le Moigne, K. Gaj, “Wavelet Spectral
Dimension Reduction of Hyperspectral Imagery on a Reconfigurable
Computer”, IEEE FPT 2004, Brisbane, Australia, December, 2004.

[27] O.D. Fidanci, H. Diab, T. El-Ghazawi, K. Gaj, and N. Alexandridis,
“Implementation Trade-offs of Triple DES in the SRC-6E
Reconfigurable Computing Environment”, Proc. MAPLD 2002.

Esam El-Araby received his B.Sc. degree in
Electronics and Telecommunication Engineering
from Assiut University, Egypt, in 1991, his Higher
Diploma degree in Automatic Control and
Computer Engineering from Assiut University,
Egypt, in 1997. He received his M.Sc. in Computer
Engineering from the George Washington

University (GWU), USA, in 2004. He is currently pursuing his Ph.D. degree
in Computer Engineering in the Department of Electrical and Computer
Engineering at the George Washington University (GWU), USA. He is also a
research assistant at the High Performance Computing Lab (HPCL) at GWU
as well as the NSF Center for High-Performance Reconfigurable Computing
(CHREC) at GWU. Being a member of the HPCL lab and a researcher with
CHREC, he participated in several research projects involving organizations
such as DoD, DARPA, NSF, and NASA. Through these projects, he
published a number of research work in international gatherings organized
by organizations such IEEE, ACM, and NASA. His publication record
includes a book chapter on HPRCs and remote sensing, 6 journal papers, and
33 conference papers. His research interests include reconfigurable
computing, hybrid architectures, evolvable hardware, performance
evaluation, digital signal/image processing, and hyperspectral remote

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

sensing.

Saumil Merchant received the B.E. degree in
Electronics from Mumbai University, India in 1999,
and the M.S. and PhD. degrees in Computer
Engineering from University of Tennessee,
Knoxville in 2003 and 2007 respectively. He is
currently a research scientist in the department of
Electrical and Computer Engineering at George
Washington University. His research interests

include reconfigurable computing, high-performance computing, embedded
computing, and machine intelligence. He is a member of IEEE and ACM.

Tarek El-Ghazawi is a Professor in the Department
of Electrical and Computer Engineering at The
George Washington University, where he also
directs the High Performance Computing
Laboratory (HPCL). He is a fellow of the Arctic
Region Supercomputing Center and a Visiting
Scientist at NASA GSFC. He has received his Ph.D.
degree in Electrical and Computer Engineering
from New Mexico State University in 1988. His

research interests include high-performance computing and architectures,
reconfigurable computing, parallel I/O, and performance evaluations. He
has published over 100 refereed research papers and book chapters in these
areas and his research has been supported by DoD/DARPA, NASA, NSF,
and industry including IBM and SGI. He is a senior member of the Institute
of Electrical and Electronics Engineers (IEEE), a member of the Association

for Computing Machinery (ACM), Phi Kappa Phi National Honor Society.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

