
Optimization and Evaluation of Image- and Signal-
Processing Kernels on the TI C6678 Multi-Core DSP

Barath Ramesh∗, Asheesh Bhardwaj†, Justin Richardson∗, Alan D. George∗ and Herman Lam∗
∗NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
University of Florida

Gainesville, FL 32611-6200
{ramesh, richardson, george, hlam}@chrec.org

†Texas Instruments
asheeshb@ti.com

Abstract—Power efficiency is an important aspect in today’s
high-performance embedded computing (HPEC) systems. Digital
signal processors (DSPs) are well known for their power efficiency
and are commonly employed in embedded systems. Increasing
computational demands in image- and signal-processing applica-
tions in embedded systems has led to the development of multi-
core DSPs with floating-point capabilities. The TMS320C6678
is an eight-core, high-performance DSP from Texas Instruments
that provides 128 GFLOPS of single-precision and 32 GFLOPS of
double-precision performance under 10W of power. In this paper,
we optimize and evaluate the performance of the TMS320C6678
DSP using two image-processing kernels, 2D convolution and
bilinear interpolation with image rotation, and two signal-
processing kernels, frequency-domain finite impulse response
(FDFIR) and corner turn. Our 2D convolution results show that
the performance of the TMS320C6678 is comparable to a Nvidia
GeForce 295 GTX GPU and 5 times better than a quad-core
Intel Xeon W3520 CPU. We achieve real-time performance for
bilinear interpolation with image rotation on the TMS320C6678
for high-definition (HD) image resolution. Our performance per
Watt results for FDFIR shows that the TMS320C6678 is 8.2
times better than the Nvidia Tesla C2050 GPU. For corner turn,
although the raw performance of the Tesla C2050 is better than
the TMS320C6678, the performance per Watt of TMS320C6678
is 1.8 times better than the Tesla C2050.

I. INTRODUCTION

Today’s high-performance embedded computing (HPEC)
applications include real-time, HD image processing that re-
quire significant processing capabilities at low power. The
increasing computational complexity of embedded-computing
applications has fueled an increasing need for more power-
ful embedded architectures. For many of these applications,
designers have often turned towards fixed accelerators such
as graphics-processing units (GPUs) and also reconfigurable
accelerators such as field-programmable gate arrays (FPGAs)
to meet their computational requirements. However, due to
power limitations and the need for fast turn-around times with
embedded-system designs, these platforms may not be viable
options in many cases. An alternative solution for such HPEC
applications is the use of emerging high-performance multi-
core DSP devices.

In this paper, we optimize and evaluate the performance
of the TMS320C6678 device using two common image-
processing kernels and two common signal-processing kernels.

The image processing kernels chosen are 2D convolution and
bilinear interpolation with image rotation. The 2D convolution
kernel is one of the most commonly used algorithms in image
processing and computer vision. In a survey of state-of-the-
art algorithms for object recognition, convolution ranked as
the most-employed algorithm [1]. Bilinear interpolation with
image rotation is a computationally and memory-intensive
image transformation which is commonly used in medical-
image registration. The signal processing kernels were taken
from HPEC Challenge benchmark suite [2]. From this suite,
the two signal-processing kernels chosen are FDFIR and corner
turn. These kernels address key operations across a variety of
image- and signal-processing applications.

The contribution of this paper comes from multiple levels
of optimization and analysis with four prominent kernels
in image and signal processing on the TI TMS320C6678
multicore DSP, as well as comparison with other processors, in
terms of speed and efficiency. Optimized designs of the four
kernels under study were developed for the TMS320C6678
architecture, using various levels of DSP optimization. Our
results show that the performance of 2D convolution on
the TMS320C6678 is comparable to a Nvidia GeForce 295
GTX and 5 times better than a Xeon W3520 CPU [3]. For
bilinear interpolation with image rotation, we achieve real-time
performance for both 1080p and 2048×2048 resolutions on the
TMS320C6678 DSP. The power efficiency of our optimized
DSP design for FDFIR is 8.2 times better than the Nvidia Tesla
C2050 GPU [4]. For corner turn, although the raw performance
of the Tesla C2050 is better than the TMS320C6678, the
performance per Watt of TMS320C6678 is 1.8 times better
than the Tesla C2050.

The reminder of the paper is organized as follows. Sec-
tion II gives a brief overview of the TMS320C6678 device
architecture. Section III presents an overview of the kernels
that were benchmarked for this study. Section IV describes
how the kernels were optimally mapped on the TMS320C6678
architecture. Section V presents the benchmarking results
obtained for the kernels, and Section VI concludes the paper
with key results and possible future work.

II. TMS320C6678 ARCHITECTURE OVERVIEW

The TMS320C6678 is an eight-core, high-performance
DSP with both fixed-point and floating-point precision capa-

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

Fig. 1. TMS320C6678 device architecture [5]

bilities. As shown in the architecture diagram in Figure 1,
the C66x CorePac is the heart of the device providing high-
performance computing through instruction- and data-level
parallelism. The EDMA3 peripheral allows for Direct Memory
Access (DMA) between DDR3 and internal memory, which
can be used to mask data transfer time behind computation.

A. C66x CorePac

The C66x CorePac is based on a Very Long Instruc-
tion Word (VLIW) architecture. VLIW architecture differs
from Reduced Instruction Set Computing (RISC) or Complex
Instruction Set Computing (CISC) architectures by having
multiple execution units which can execute several instructions
in parallel. The C66x CorePac has two identical data paths,
(A and B), each with four unique functional units (M, L,
S, and D). The M unit performs multiplication operations,
while the L and S units handle addition, subtraction, logical,
branching, and bitwise operations. The D unit is responsible
for load/store and address calculations. All the functional units
provide vector-processing capabilities using the SIMD instruc-
tion set included in the C66x CorePac. The SIMD instructions
can operate on up to 128-bit vectors providing data-level
parallelism within each core. With L, M, and S units on the
two data paths, each core can perform eight single-precision
or two double-precision multiply-add operations in one cycle.
The TMS320C6678 also provides thread-level parallelism by
scheduling application on the eight available cores.

B. Memory hierarchy and data movement

Each C66x CorePac is equipped with 32 KB of L1 data
and program cache and 512 KB of L2 unified cache. The L1
and L2 on-chip memory can be dynamically configured as a
cache, RAM or part RAM and cache. The eight cores in the
device offer 256 KB of L1 and 4096 KB of L2 on-chip memory
in total. There is an additional 4096 KB of internal memory

shared across all eight C66x CorePacs. The device supports
64-bit DDR3 external memory operating up to 1600 MHz.

The EDMA3 peripheral enables efficient data movement
between DDR3 and on-chip memory without CPU involve-
ment. The ability to configure internal memory as part RAM
and/or cache along with EDMA3 allows the developer to tune
the architecture to their application or kernel needs.

III. KERNEL OVERVIEW

This section gives a brief overview of the kernels that
were benchmarked on the TMS320C6678 device for this study.
We explain the functionality and computational complexity
involved in each of the kernels.

A. 2D convolution

The 2D convolution kernel is a key component in many
algorithms for object recognition, feature extraction, and image
segmentation. As shown in Eq. 1, the input to the kernel
consists of an image (I) of size x × y that is traversed by
sliding a feature mask F (image to be matched) of smaller
size m × n across all non-edge subspaces of I . Each input
pixel in the window is multiplied with a constant in the feature
mask and summed in order to obtain an output pixel. The size
of the output image (O), after completely sliding the feature
window, is (x−m+1)×(y−n+1). The 2D convolution kernel
is a computation- and memory-intensive algorithm. A 1080p
(1920×1080 pixels) 16-bit image with a 25×25 feature mask
requires (1920−25+1)×(1080−25+1) ≈ 2 million window
calculations, requiring 2M × 16 × 625 ≈ 20 trillion non-
sequential memory accesses, and ≈ 20 trillion calculations.

O[a][b] =

n−1∑
i=0

m−1∑
j=0

I[a+ i][b+ j]× F [n− i][m− j]

where a = 0, . . . , x−m; b = 0, . . . , y − n

(1)

B. Bilinear interpolation with image rotation

Image rotation is one of the most compute-intensive image
transformations. The new pixel coordinate (x

′
, y

′
) of the

rotated image pixel is obtained by performing matrix-vector
multiplication as shown in Eq. 2, where (x, y) is the source
pixel location, (xo, yo) is the point about which the image is
rotated, and θ is the angle of rotation. Rotated pixel locations
are constructed from the input pixel locations according to
Eq. 2. Due to this mapping, rotated pixel locations often do
not correspond to exact pixel locations in the input image.
The output pixel values are then calculated using bilinear
interpolation. [

x
′

y
′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x− xo
y − yo

]
(2)

The kernel requires 15 arithmetic operations to obtain
the transformed pixel location and six to perform bilinear
interpolation. Therefore, the transform requires 21 operations
per output pixel. Adding to this computational complexity
is the memory-access pattern of the algorithm. Since the
transformed pixel location is based on non-linear functions,
input pixel values are read in a non-linear fashion.

C. FDFIR

FDFIR is an FIR filter implemented in the frequency-
domain. FDFIR is a common signal-processing algorithm typ-
ically used in the front-end of applications such as synthetic-
aperture radar and speech processing. The kernel consists of M
FIR filters, where each FIR filter m, m ∈ {0, 1, . . . ,M − 1},
has a set of filter coefficients hm[k], k ∈ {0, 1, . . . ,K − 1}.
For an input vector xm of length N, the convolved output ym
is given by Eq. 3. For a given FIR filter m, to obtain an output
ym, two Fast Fourier Transforms (FFTs), one complex vector-
vector multiplication, and one Inverse FFT (IFFT) need to be
performed.

ym[i] =

K−1∑
k=0

xm[i− k]hm[k], for i = 0, 1, . . . , N − 1

ym = F−1 [F {xm} ·F {hm}]

(3)

D. Corner turn

The HPEC Challenge benchmark suite defines corner turn
as the change in the storage order of data in memory. In the
case of multi-dimensional data such as a matrix, it refers to
the transposition of elements. Eq. 4 shows the storage order
of a 3× 3 matrix, A, and the transposed storage order of A.

A = [1 2 3; 4 5 6; 7 8 9]

AT = [1 4 7; 2 5 8; 3 6 9]
(4)

IV. MAPPING KERNELS TO TMS320C6678

In this section we describe the various optimization strate-
gies used to map the kernels on the TMS320C6678 device
architecture. In our optimized design of the kernels, the L2
on-chip memory is partitioned into part RAM and part cache
with the RAM section referred to as L2SRAM. The L1 on-chip
data memory was configured as cache.

A. 2D convolution

For our DSP-optimized design, the 2D convolution kernel
was written in C and then optimized using C66x SIMD
intrinsics. The input image and feature mask are stored in
DDR3. The output image, after convolving the input and
feature mask, is written back to DDR3. The SIMD intrinsics,
MEM8 and DOTPSU4H, allow for quad-word processing on
16-bit precision pixels as summarized below:

1) Pixel read: MEM8 allows unaligned loads of four bytes
from memory. MEM8 can be used to read four pixels of input
and feature mask of the sliding window.

2) Dot product: DOTPSU4H multiplies four, signed 16-bit
values by four, unsigned 16-bit values and returns the 32-bit
sum. DOTPSU4H can therefore be used to perform the dot
product of four input and four feature pixels read using the
MEM8 SIMD intrinsic.

Figure 2 shows an excerpt of our C code for the pri-
mary computation loop with intrinsic optimizations for the
2D convolution. Intrinsics reduce the iteration count of the
innermost for loop by four times. Also, after the compiler
software pipelines the for loop, the iteration interval for our
C code is twice that of the optimized code with intrinsics.

1 for (k = 0; k < FEATURE SIZE; k++){
2 for (l = 0; l < FEATURE SIZE; l++){
3 // Basic C
4 out += imgIn[(i+k)∗IMG COLS + (j+l)]
5 ∗ featureIn[k][l];
6 // SIMD intrinsic code
7 imgInPix 64 = mem8(&imgIn[(i+k)∗(IMG COLS) + j +l]);
8 featureInPix 64 = mem8(&featureIn[k∗(FEATURE SIZE)+l]);
9 outInt += dotpsu4h(imgInPix 64, featureInPix 64);

10 }
11 }

Fig. 2. C code and intrinsics for 2D convolution to get one output pixel

Fig. 3. Parameters involved in block-based image rotation [6]

B. Bilinear interpolation with image rotation

The naı̈ve C code for the image rotation algorithm on the
TMS320C6678 DSP depends on the cache controller’s ability
to keep the data paths busy. Given the complex nature of the
algorithm, it is not the best way to take advantage of the
DSP architecture and resources. A block-based image rotation
algorithm was proposed by the authors of [6] for 64x64x64
ultrasound images. We leverage the algorithm proposed in [6]
for 1080p image resolution with DMA optimization. Following
a block-based approach using DMA, bilinear interpolation
achieved a performance improvement of 3.4 times the naı̈ve
code for 1080p images. Figure 3 shows the parameters in-
volved in the block-based rotation algorithm. Eq. 5 shows the
relation between the parameters in Figure 3 and Eq. 2. The
xshift and yshift parameters correspond to the first pixel
value of an output block.

xstep r = sin θ; ystep r = cos θ

xstep c = cos θ; ystep c = − sin θ
(5)

The following two types of optimizations were applied to
improve the performance of the kernel on the DSP:

1) Intrinsic optimization: SIMD capabilities of the C66x
CorePac can be used in the block-based image rotation in a
couple of ways.

a) Addition: The C66x CorePac can perform four 32-
bit addition operations in one cycle. The DSADD intrinsic
performs an addition of two signed 32-bit values to produce
two 32-bit signed results.

b) Comparison: The C66x CorePac can perform four
32-bit comparison operations in one cycle. The DCMPGT2
intrinsic performs a 4-way SIMD comparison of signed 16-bit
values. The results are packed into the four least-significant
bits of the return value.

1 // changes for every block
2 Compute: xshift & yshift;
3 Compute:
4 xy step c = itoll(xstep c,ystep c);
5 xy step r = itoll(xstep r,ystep r);
6 xy start r = itoll(xshift,yshift);
7 xMaxyMax = (COLS)<<16|(ROWS);
8

9 for (row = 0; row < TARGET ROWS; row++)
10 {
11 xy = xy start r;
12 for (col = 0; col < TARGET COLS; col++)
13 {
14 dcmpgt2(itoll(xy,xMaxyMax), itoll(0,xy))
15 {
16 compute input addresses and fetch input data;
17 compute interpolate;
18 target pixel[row, col] = interpolate;
19 xy = dsadd(xy,xy stepc);
20 }
21 }
22 xy start r = dsadd(xy start r,xy step r);
23 }

Fig. 4. Pseudo-code for rotating an image block with intrinsic optimization

Input image in DDR3
Input ping-pong
buffers in L2

Output ping-pong
buffers in L2 Output rotated image

 in DDR3

DMA read

Rotate

DMA write

Fig. 5. Software architecture for image rotation

Pixel coordinates can be packed into a single 64-bit value
using the ITOLL intrinsic. ITOLL builds a register pair by
reinterpreting two 32-bit unsigned values, enabling the use of
SIMD intrinsics as shown in Figure 4.

2) DMA optimization: Due to the non-linear, function-
based reads in the image rotation, it is impossible to read the
exact block of pixels from input image. In order to ensure that
all input pixel values are available, a 2K × 2K block of the
input image values is read into L2SRAM for rotating an image
of block of size K×K. The first transformed pixel location of
an output block determines the starting location of the input
block to be read. Thus, we read four times the output-pixel
count per block to ensure that all pixel values required for
the transform are available in L2SRAM. Then, for each pixel
location in the output block, the mapping is calculated based
on Eq. 2, followed by bilinear interpolation. The above method
is employed for all output blocks to obtain a rotated image of
the input. In order to mask the DMA transfer time, L2SRAM
is split into four buffers, two for input-block read and two
for output-block write. Figure 5 shows the ping-pong strategy
used to mask DMA transfer time behind computation.

C. FDFIR

Figure 6 shows the software architecture of the FDFIR
benchmark. Complex filter inputs xm and corresponding zero-
padded filter coefficients hm are stored in external DDR3
memory. Outputs from each filter ym are written back to
DDR3 external memory. Six buffers are allocated in L2SRAM:
two input buffers to hold xm and hm; two buffers to write
back data after performing an N-point FFT on the first two
buffers; a buffer to store results after complex vector-vector
multiplication; and a buffer to store output ym obtained by per-

x1(0), .., x1(N − 1)

...
xM(0), .., xM(N − 1)

h1(0), .., h1(N − 1)

...
hM(0), .., hM(N − 1)

y1(0), .., y1(N − 1)

...
yM(0), .., yM(N − 1)

DDR3 Memory

xm(0), .., xm(N − 1)

hm(0), .., hm(N − 1)

Xm(0), ..,Xm(N − 1)

Hm(0), ..,Hm(N − 1)

Ym(0), ...,Ym(N − 1)

ym(0), .., ym(N − 1)

L2SRAMDMA T
X

6

DMA TX

1
F

2 4

5
F−1

7
DMA TX

3

Fig. 6. FDFIR software architecture

forming IFFT on the data in the previous buffer. EDMA3 was
used to efficiently transfer data between DDR3 and L2SRAM.
The following steps were used to maximize performance by
overlapping DMA transfers and computation:

1) Initiate DMA transfer to read filter coefficient hm from
DDR3 to input buffer in L2SRAM

2) Perform N-point FFT on xm and write result Xm to buffer
in L2SRAM

3) Initiate DMA transfer to write result ym obtained in
previous iteration from L2SRAM to DDR3

4) Perform N-point FFT on hm and write output Hm to
buffer in L2SRAM

5) Perform complex, vector-vector multiplication of Xm and
Hm and write result Ym to buffer in L2SRAM

6) Initiate DMA transfer to read filter input xm required in
the next iteration

7) Perform IFFT of Ym and write result ym to buffer in
L2SRAM

Using this approach, the time required for every DMA
transfer is masked by an FFT operation. FFT and IFFT
operations are performed using optimized code with intrinsics
available in TI’s C66x DSPLIB [7].

D. Corner turn

The corner turn benchmark in the HPEC Challenge bench-
mark suite is equivalent to matrix transposition. We leveraged
the block-based DMA approach proposed in [8]. Figure 7
shows the ping-pong strategy employed for block-based matrix
transpose. EDMA3 allows for efficient block transfers between
the DDR3 and L2SRAM. Optimized code with intrinsics
available in TI’s C66x DSPLIB is used for transposing a
matrix block in L2SRAM. Although matrix transpose can be
performed using only EDMA3, the employed scheme allows
for the use of the fast internal memory and the DSP’s logical
units to transpose the matrix.

V. RESULTS

All kernels were evaluated using a TMDXEVM6678LE
evaluation module (EVM). This EVM has a TMS320C6678
device clocked at 1 GHz and equipped with 512 MB of DDR3
memory. After the design of the kernels was optimized for a
single DSP core, OpenMP was used to parallelize the kernels
across all eight cores of the device. We developed basic C
code for the image-processing kernels and leveraged optimized

Input matrix in DDR3

Input ping-pong
buffers in L2

Output ping-pong
buffers in L2

Output transposed
matrix in DDR3

DMA read

Transpose

DMA write

Fig. 7. Corner Turn software architecture

intrinsic-code available from TI’s C66x DSPLIB for the signal-
processing kernels. Various levels of DSP optimization were
performed and are denoted as follows:

1) Basic C: Plain C code ported onto single core of
TMS320C6678 device

2) Basic C+OMP: Basic C code parallelized across eight
cores of TMS320C6678 device using OpenMP

3) Intrinsics: Performance on single core of TMS320C6678
with intrinsic optimizations

4) Intrinsics+DMA: Performance on single core of
TMS320C6678 with intrinsic and DMA optimizations

5) Intrinsics+DMA+OMP: Intrinsics+DMA design paral-
lelized across eight cores of TMS320C6678 using
OpenMP

A. 2D convolution

The performance of the 2D convolution kernel for HD
image resolution was studied on an FPGA using highly op-
timized circuit architecture by Fowers et al. in [3]. To the
best of our knowledge, [3] is the best performing implemen-
tation of 2D convolution on an FPGA. Figure 8 shows the
performance comparison between the TMS320C6678 DSP,
an Nvidia GeForce 295 GTX GPU, an Intel Xeon W3520
CPU (single- and quad-core), and an Altera Stratix III E260
FPGA in frames per second (FPS). The FPGA, GPU, and
CPU results were obtained from [3] with input image of size
1920× 1080, feature mask of size 25× 25, and 16-bit fixed-
point precision for pixels. Results show that performance of
the DSP is 5 times better than the CPU and comparable to
the GPU. As expected, the intrinsic-based code leads up to 2
times better performance over our basic C code on the DSP.
The TMS320C6678 DSP consumes only 10W of power and
achieves comparable performance to that of a GPU at 144.5W,
making it a good choice for power-efficient applications that
involve 2D convolution. Although the FPGA outperforms the
DSP, one has to consider that the design effort and time to
implement an optimized design on the DSP is much lower than
that on an FPGA. Also, 2D convolution is an embarrassingly
parallel algorithm and, thus, real-time performance for 2D
convolution can be achieved by adding more DSP devices.

B. Bilinear interpolation with image rotation

Figure 9 shows the performance of the DSP for various
levels of optimization. The DSP-optimized design uses 8-bit
fixed-point precision for pixel values. Cosine/sine tables for
a step size of 1◦ were stored in the shared-memory space
with 16-bit, fixed-point, signed precision. The performance of
the DSP for various optimizations was tested using an 8-bit

0.69

5.42

1.44

10.86

0.76

2.17

31.07

12.88

0.50

5.00

50.00

FP
S

1080p 2D convolution, 25x25 mask
Basic C (DSP)
Basic C+OMP (DSP)
Intrinsics (DSP)
Intrinsics+OMP (DSP)
Xeon W3520 single-core
Xeon W3520 quad-core
Stratix III E260
GeForce 295 GTX

Fig. 8. Performance of 2D convolution

11.8
6.1

29.2

8.1
14.3

7.2

98.3

51.6

18.6
10.6

44.9

29.6

0.0

20.0

40.0

60.0

80.0

100.0

120.0

 1920x1080 2048x2048
FP

S

Bilinear interpolation w/ image rotation
Basic C (DSP)
Basic C+OMP (DSP)
Intrinsics+DMA (DSP)
Intrinsics+DMA+OMP (DSP)
Xeon E5520 single-core
Xeon E5520 quad-core

Fig. 9. Performance of bilinear interpolation with image rotation

gray-scale image of HD (1080p) and 2048×2048 resolutions.
Results show that real-time performance (98.3 FPS) can be
achieved on the DSP using intrinsics+DMA+OMP optimiza-
tion. The non-linear memory access pattern of the kernel makes
it inefficient to implement on cache-based system. The ability
to pre-fetch the block of image required for computation using
EDMA3 on the DSP makes the device a good choice for
kernels involving spatial transformations.

C. FDFIR

As shown in Figure 10, we compare our DSP-optimized
design for FDFIR with the Nvidia Tesla C2050 GPU result
obtained from [4]. In [4], the authors implement the com-
plete HPEC Challenge benchmark suite on an Nvidia Tesla
C2050 GPU and claim to achieve better performance than all
previously published results using GPUs. Both the DSP and
the Nvidia Tesla C2050 GPU are manufactured using 40nm
process technology, thus making it a reasonable comparison
in terms of power efficiency. FDFIR results shown in Figure
10 are for Set 1 [2] of the HPEC Challenge benchmark suite.
The parameters used are M = 64, N = 4096,K = 128, and
single-precision complex data. The performance of FDFIR on
all eight cores of the DSP is 21.31 GFLOPS. Considering
that the DSP consumes 10W of power, the performance per
Watt for the DSP is calculated to be 2.13 GFLOPS/W. The
GPU’s performance for FDFIR is 61.68 GFLOPS, with a
power consumption of 238W, so the performance per Watt of
the GPU is calculated to be 0.26 GFLOPS/W. Thus, although
the performance of the GPU is 2.9 times better than the DSP,
the power efficiency of our optimized DSP design is 8.2 times
better than that of the GPU. It can be noted from Figure 10
that intrinsics+DMA based design leads to 11% performance
increase over an intrinsics-only based code. The performance

2.94 3.28

21.31

61.68

1.00

10.00

100.00
G

FL
O

P
S

FDFIR

Intrinsics (DSP)

Intrinsics+DMA (DSP)

Intrinsics+DMA+OMP (DSP)

Nvidia Tesla C2050

Fig. 10. Performance of FDFIR

0.09

1.75
2.70

35.55

0.05

0.50

5.00

50.00

G
b

yt
e

s/
Se

c

Corner turn
Intrinsics (DSP)
Intrinsics+DMA (DSP)
Intrinsics+DMA+OMP (DSP)
Nvidia Tesla C2050

Fig. 11. Performance of corner turn

of FDFIR is dominated by FFT/IFFT and our results show
that the TMS320C6678 DSP is a good choice in terms of
power efficiency for algorithms with FFT/IFFT as their major
computational load.

D. Corner turn

The corner turn results shown in Figure 11 are for Set 2 of
the HPEC Challenge benchmark suite, a 750×5000 matrix of
single-precision, floating-point data. The Nvidia Tesla C2050
GPU result for corner turn was obtained from [4]. Results
show that using DMA improves the performance of corner
turn by 20 times on the DSP (intrinsics vs. intrinsics+DMA).
The performance of the DSP for corner turn on all eight
cores is 2.70 Gbytes/Sec, thus the performance per Watt is
calculated to be 270 Mbytes/Sec/W. The performance of the
GPU is 35.55 Gbytes/Sec and hence the performance per
Watt is calculated to be 149 Mbytes/Sec/W. Corner turn is
a memory-intensive operation requiring high external-memory
bandwidth. The GPU’s higher external bandwidth over the
DSP leads to a significantly better performance of the kernel
on the GPU. But in terms of performance per Watt, the DSP
is 1.8 times better than the GPU. The performance of corner
turn is dominated by I/O and so increasing the number of
DSP cores does not yield better performance once the DDR3
memory bandwidth is saturated. Hence, moving to an eight-
core design using OpenMP on the DSP leads to a speedup of
only 1.54 times over a single core.

VI. CONCLUSIONS

With growing computational demands of signal- and
image-processing applications, power efficiency has become
an important factor in HPEC systems. DSPs are commonly
employed in low-power embedded systems. But the advent
of multi-core DSPs, such as the TMS320C6678, enables
DSPs to compete better in the HPEC domain. In this paper,
we have optimized and evaluated the performance of the
TMS320C6678 DSP device using four commonly used image-
and signal-processing kernels. We compared our results for
the TI TMS320C6678 with optimized CPU, GPU, and FPGA
implementations.

Our 2D convolution results show that the performance of
the TMS320C6678 DSP is comparable to that of a Nvidia
GeForce 295 GTX GPU and 5 times better than a quad-
core Xeon W3520 CPU with better power efficiency. There is
potential for additional performance improvement using DMA
for 2D convolution, which the authors plan to explore in
future work. For bilinear interpolation with image rotation, we
achieve real-time performance for both 1080p and 2048×2048
resolutions on the DSP. The power efficiency of the optimized
DSP design for FDFIR is 8.2 times better than the Nvidia
Tesla C2050 GPU. For corner turn, the power efficiency of
the optimized DSP design is 1.8 times better than Tesla C2050
GPU. In summary, current-generation, multi-core DSPs, such
as TI’s TMS320C6678, can provide a viable solution for to-
day’s HPEC applications verse existing, traditional accelerator
options.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022.

REFERENCES

[1] F. Iandola, D. Sheffield, M. Anderson, P. Phothilimthana, and K. Keutzer,
“Communication-minimizing 2d convolution in gpu registers,” in Image
Processing (ICIP), 2013 20th IEEE International Conference on, Sept
2013, pp. 2116–2120.

[2] Hpec challenge suite. [Online]. Available:
http://www.omgwiki.org/hpec/files/hpec-challenge/

[3] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of fpgas, gpus, and multicores for sliding-window
applications,” in International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’12, Feb 2012, pp. 47–56.

[4] S. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen, X. Xie, and Y. Deng,
“Evaluating the potential of graphics processors for high performance
embedded computing,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, March 2011, pp. 1–6.

[5] Tms320c6678 multicore fixed and floating-point digi-
tal signal processor, data manual. [Online]. Available:
http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf

[6] Implementation of affine warp using ti dsp. [Online]. Available:
http://www.ti.com/lit/an/sprabc5/sprabc5.pdf

[7] Tms320c64x+ dsp little-endian dsp library programmers reference.
[Online]. Available: http://www.ti.com/lit/ug/sprueb8b/sprueb8b.pdf

[8] D. Wang and M. Ali, “Synthetic aperture radar on low power multi-
core digital signal processor,” in High Performance Extreme Computing
(HPEC), 2012 IEEE Conference on, Sept 2012, pp. 1–6.

