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Despite significant performance and power advantages compared to microprocessors, widespread usage of FPGAs has been limited
by increased design complexity. High-level synthesis (HLS) tools have reduced design complexity but provide limited support
for verification, debugging, and timing analysis. Such tools generally rely on inaccurate software simulation or lengthy register-
transfer-level simulations, which are unattractive to software developers. In this paper, we introduce HLS techniques that allow
application designers to efficiently synthesize commonly used ANSI-C assertions into FPGA circuits, enabling verification and
debugging of circuits generated from HLS tools, while executing in the actual FPGA environment. To verify that HLS-generated
circuits meet execution timing constraints, we extend the in-circuit assertion support for testing of elapsed time for arbitrary
regions of code. Furthermore, we generalize timing assertions to transparently provide hang detection that back annotates hang
occurrences to source code. The presented techniques enable software developers to rapidly verify, debug, and analyze timing for
FPGA applications, while reducing frequency by less than 3% and increasing FPGA resource utilization by 0.7% or less for several
application case studies on the Altera Stratix-II EP2S180 and Stratix-III EP3SE260 using Impulse-C. The presented techniques
reduced area overhead by as much as 3x and improved assertion performance by as much as 100% compared to unoptimized
in-circuit assertions.

1. Introduction

Field-programmable gate arrays (FPGAs) show significant
power and performance advantages as compared to micro-
processors [1], but have not gained widespread acceptance
largely due to prohibitive application design complexity.
High-level synthesis (HLS) significantly reduces application
design complexity by enabling applications written in a high-
level language (HLL) such as C to be executed on FPGAs.
However, limited HLS support for verification, debugging,
and timing analysis has contributed to limited usage of such
tools.

For verification, designers using HLS can use assertion-
based verification (ABV), a widely used technique in elec-
tronic design automation (EDA) tools [2], to verify runtime
behavior by executing an application that contains assertions
against a testbench. However, assertion-based verification of
programs written in C using HLS tools, such as Impulse-C

[3] and Carte [4], is often limited to software simulation of
the FPGA’s portion of the code, which can be problematic
due to common inconsistencies between simulated behavior
and actual circuit behavior. Such inconsistencies most com-
monly result from timing differences between the software
thread-based simulation of the circuit and the actual FPGA
execution [5]. In some cases, these inconsistencies may cause
an application that behaves normally in software simulation
to never complete (i.e., hang) when executing on the FPGA.
Debugging an HLS-generated circuit to identify the cause of
such hangs is a significant challenge that currently requires
excessive designer effort.

Timing analysis, a procedure which determines if per-
formance constraints are met, is an additional limitation of
many HLS tools. Although timing analysis is widely used in
physical design tools, in many cases, HLS tools do not con-
sider timing constraints. Even worse, designers are unaware
of the performance of different regions of an HLS-generated
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circuit, which makes optimization more difficult. Although
timing measurements can be taken during high-level simu-
lation, such measurements are based on software simulation
and do not reflect actual circuit performance [6].

One potential solution to these verification, debugging,
and timing-analysis problems is for designers using HLS
to use postsynthesis register-transfer-level (RTL) simulation.
However, such an approach requires a designer to manu-
ally add assertions to HLS-generated hardware-description-
language (HDL) code, which is a cumbersome process (as
compared to adding assertions at the source level) and
there are numerous situations where such simulations may
be infeasible or undesirable. For example, a designer may
use HLS to create a custom core that is part of a larger
multiprocessor system that may be too complex to model
with cycle accuracy. Even if such modeling was realized, slow
simulation speeds can make such verification prohibitive to
many designers.

Ideally, designers could overcome these limitations by
specifying assertions in high-level code, which the HLS tool
could integrate into generated circuits to verify behavior and
timing, while also assisting with debugging. To achieve this
goal, we present HLS techniques to efficiently support in-
circuit assertions. These techniques enable a designer to use
assertions at the source level while checking the behavior
and timing of the application. Furthermore, we leverage
such assertions to enable a debugging technique referred
to as hang detection that reports the specific high-level
regions of code where a hang occurs. To realize these in-
circuit assertion-based techniques, this paper addresses sev-
eral key challenges: scalability, transparency, and portability.
Scalability (large numbers of assertions) and transparency
(low overhead) are interrelated challenges that are necessary
to enable thorough in-circuit assertions while minimizing
effects on program behavior. We address these challenges
by introducing optimizations to minimize performance and
area overhead, which could potentially be integrated into
any HLS tool. Portability of in-circuit assertion synthesis, for
verification or timing analysis, is critical because HLS tools
can target numerous platforms and must, therefore, avoid
platform-specific implementations. The presented tech-
niques achieve portability by communicating all assertion
failures over the HLS-provided communication channels.
Using a semiautomated framework that implements the
presented HLS techniques, we show that in-circuit assertions
can be used to rapidly identify bugs and violations of timing
constraints that do not occur during software simulation,
while only introducing a small overhead (e.g., reduction in
frequency on the order of less than 3% and increase in
FPGA resource utilization of 0.7% or less have been observed
with several application case studies on an Altera Stratix-
II EP2S180 and Stratix-III EP3SE260). Various case studies
with optimized assertions have shown a 3x reduction in
resource usage and improved assertion performance by as
much as 100% compared to unoptimized assertion synthesis.
Such work has the potential to improve designer productivity
and to enable the use of FPGAs by nonexperts who may
otherwise lack the skills required to verify and optimize HLS-
generated circuits.

This paper is presented as follows. Section 2 discusses
related work. Assertion-synthesis techniques and optimiza-
tions are explained in Section 3. Section 4 discusses timing
analysis. Hang detection is described in Section 5. Section 6
describes the experimental setup and framework used to
evaluate the presented techniques. Section 7 presents experi-
mental results. Section 8 provides conclusions.

2. Related Research

Many languages and libraries enable assertions in HDLs
during simulation, such as VHDL assertion statements,
SystemVerilog Assertions (SVA) [7], the Open Verification
Library (OVL) [8], and the Property Specification Language
(PSL) [9]. Previous work has also introduced in-circuit
assertions via hardware assertion checkers for each assertion
in a design. Tools targeted at ASIC design provide assertion
checkers using SVA [10], PSL [11], and OVL [12]. Academic
tools such as Camera’s debugging environment [13] and
commercial tools such as Temento’s DiaLite also provide
assertion checkers for HDL. Kakoee et al. show that in-circuit
assertions [12] can also improve reliability, with a higher
fault coverage than Triple Modular Redundancy (TMR) for a
FIR filter and a Discrete Cosine Transform (DCT).

Logic analyzers such as Xilinx’s ChipScope [14] and
Altera’s SignalTap [15] can also be used for in-circuit
debugging. These tools can capture the values of HDL signals
and extract the data using a JTAG cable. However, the
results presented by these tools are not at the source level
of HLS tools. A source-level debugger has been built for
the Sea Cucumber synthesizing compiler [16] that enables
breakpoints and monitoring of variables in FPGAs. Our work
is complementary by enabling HLL assertions and can be
potentially be used with any HLS tool.

Checking timing constraints of HDL applications can
be performed with many of the methods mentioned above.
SVA, PSL, and OVL assertions can be used to check the
timing relationship between expected values of signals in an
HDL application [17]. A timed C-like language, TC (timed
C), has been developed for checking OVL assertions inserted
as C comments for use during modeling and simulation
[18]. In-circuit logic analyzers such as ChipScope [14] and
SignalTap [15] can also be used to trace application signals
and check timing constraints for signal values. The HLS
tool, Carte, provides timing macros [6] which return the
value of a 64-bit counter that is set to zero upon FPGA
reset. However, most HLS tools (including Impulse C) do
not provide this functionality. In-circuit implementation
of high-level assertions is a more general approach that
potentially supports any HLS tool and enables designers to
use ANSI-C assertions.

After a comprehensive literature search, we found no
previous work related to hang detection of HLS applica-
tions (except for the initial work [19] being extended by
this paper). Hang detection for microprocessors has been
implemented on FPGAs [20]. Nakka et al. [21] separate
hang detection for microprocessors into three categories.
First, Instruction-Count Heartbeat (ICH) detects a hung
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process not executing any instructions. Second, Infinite-
Loop Hang Detector (ILHD) detects a process which never
exits a loop. Finally, Sequential-Code Hang Detector (SCHD)
detects a process that never exits a loop because the target
address for the completion of a loop is corrupted. Although
similar detection categories could be used for hardware
processes generated by HLS tools, the methods needed for
hang detection are different; hardware processes typically
use state machines for control flow rather than using
instructions. The related work found for microprocessor
hang detection is typically used to increase reliability of the
system by terminating the hung process rather than to help
an application developer find the problematic line of code.

Although HDL assertions could be integrated into HLS-
generated HDL, such an approach has several disadvantages.
Any changes to the HLL source or a different version of
the HLS tool could cause changes to the generated HDL
(e.g., reorganization of code or renaming of signals), which
requires the developer to manually reinsert the assertions
into the new HDL. It is also possible that the developer
may not be able to program in HDL or the HLS tool
may encrypt or obfuscate generated HDL (e.g., Labview-
FPGA). HLL assertions for HLS avoid these problems by
adding assertions at the source level. Specifically, ANSI-C
[22] assertions were chosen to be synthesized to hardware,
since they are a standard assertion widely used by software
programmers. Synthesizing ANSI-C assertions would allow
existing assertions already written for software programs to
be checked while running in circuit.

HLS optimizations for assertions were originally intro-
duced in [19]. In this paper, we extend that work with
techniques for timing analysis and hang detection.

3. Assertion Synthesis and Optimizations

ANSI-C assertions, when combined with a testbench, can
be used as a verification methodology to define and test the
behavior of an application. Each individual assertion is used
to check a specific run-time Boolean expression that should
evaluate to true for a properly functioning application.
If the expression evaluates to false, the assertion prints
failure information to the standard error stream including
the file name, line number, function name, and expression
that failed; after this information is displayed, the program
aborts.

The presented HLS optimizations for in-circuit asser-
tions assume a system architecture consisting of at least one
microprocessor and FPGA and an application modeled as
a task graph. These assumptions are common to existing
HLS approaches [3]; therefore, the discussed techniques
are potentially widely applicable with minor changes for
different languages or tools.

In-circuit assertions are integrated into the application
by generating a single assertion checker for each assertion and
an assertion notification function, as shown in the top right
hand side of Figure 1. The assertion checker implements the
corresponding Boolean assertion condition by fetching all
data, computing all intermediate values, and signaling the
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Figure 1: Assertion framework.

assertion notification function upon failure. The assertion
notification function is responsible for printing information
regarding all assertion failures and halting the application.

The assertion notification function can run simulta-
neously with the application as a task waiting for failure
messages from the assertion checkers. The task is defined
essentially as a large switch statement per communication
channel that implements one case for each hardware-
mapped assertion. Although a hardware/software partition-
ing algorithm could potentially map the assertion notifica-
tion function task to either hardware or software, typically,
the assertion notification function will be implemented in
software due to the need to communicate with standard
error. Although the added HLS communication channels in
the task graph could greatly increase the I/O requirements
for hardware/software communication, such a situation is
avoided by time multiplexing all communication over a
single physical I/O channel (e.g., PCIe bus, single pin).
Performance overhead due to this time multiplexing should
be minimal or even nonexistent (depending on the HLS tool)
since ANSI-C assertions only send messages upon failure and
halt the program after the first failed assertion.

One potential method to synthesize assertion checkers
into circuits is described as follows. Semantically, an assert
is similar to an if statement. Thus, assertions could be
synthesized by converting each assertion into an if statement,
where the condition for the if statement is the complemented
assertion condition, and the body of the if statement
transfers all failure information to the assertion notification
function. Although such a straightforward conversion of
assert statements may be appropriate for some applications,
in general, this conversion will result in significant area
and performance overhead. To deal with this overhead, we
present three categories of optimizations that improve the
scalability and transparency of in-circuit assertions, which
are described in the following sections.

3.1. Assertion Parallelization. To maximize transparency of
in-circuit assertions, the circuit for the assertion checker
should have a minimal effect on the performance of the
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Figure 2: Application’s state machine without assertion.

original application. However, by synthesizing assertions via
direct conversion to if statements, the synthesis tool modifies
the application’s control-flow graph and resulting state
machine, which adds an arbitrarily long delay depending
on the complexity of the assertion statement. For Impulse-
C, the delay of the assertion assert(( j <= 0 || a[0] ==
i)&&(b[0] == 2 || i > 0)) can be shown by comparing
the corresponding subset of the application’s state machine
before (Figure 2) and after (Figure 3) the assertion is added.
For this example, the assertion can add up to seven cycles
of delay to the original application for each execution of the
assertion. While seven cycles may be acceptable for some
applications, if this assertion occurred in a performance-
critical loop, the assertion could potentially reduce the
loop’s rate (i.e., the reciprocal of throughput) to 12.5% of
its original single-cycle performance, which could signifi-
cantly affect how application components interact with each
other.

HLS tools can minimize the effect of assertions on the
application’s control-flow graph by executing the assertions
in parallel with the original application. To perform this
optimization, HLS can convert each assertion statement into
a separate task (e.g., a process in Impulse-C) that enables
the original application task to continue execution while the
assertion is evaluated. Instead of waiting for the assertion, the
application simply transfers data needed by the assertion task
and then proceeds.

For the previous assertion example, the optimization
reduced the overhead from seven cycles to a single cycle
as shown in Figure 4. The optimization was unable to
completely eliminate overhead due to resource contention
for shared block RAMs. Such overhead is incurred when
the assertion task and the application task simultaneously
require access to a shared resource.
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Figure 3: Application’s state machine with unoptimized, serial
assertion.

3.2. Resource Replication. As mentioned in the previous
section, resource contention between assertions and the
application can lead to performance overhead even when
assertions are executed in parallel. To minimize this over-
head, HLS can perform resource replication by duplicating
shared resources.

For example, arrays in C can be synthesized into block
RAMs. A common source of overhead is due to the limited
number of ports on block RAMs that are simultaneously
used by both the application tasks and assertion tasks. When
accessing different locations of the block RAM, the circuit
must time-multiplex the data to appropriate tasks, which
causes performance overhead. HLS can effectively increase
the number of ports by replicating the shared block RAMs,
such that all replicated instances are updated simultaneously
by a single task. This optimization ensures that all replicated
instances contain the same data, while enabling an arbitrary
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Figure 4: State machine with parallel assertion.

number of tasks to access data from the shared resource
without delay.

Resource replication provides the ability to reduce per-
formance overhead at the cost of increased area overhead.
Such tradeoffs are common to HLS optimizations and are
typically enabled by user-specified optimization strategies
(i.e., optimize for performance as opposed to area). One
potential limitation of resource replication is that for a large
number of replicated resources, the increased area overhead
could eventually reduce the clock speed, which may outweigh
the reduced cycle delays. However, for the case study in
Section 7.2.3, resource replication improved performance by
33% allowing the application’s pipeline rate to remain the
same.

3.3. Resource Sharing. Whereas the previous two optimiza-
tions dealt with performance overhead, in-circuit assertions
can also have a large area overhead. Although an assertion
checker circuit will generally cause some overhead due to the
need to evaluate the assertion condition, HLS can minimize
the overhead by sharing resources between assertions. For
example, if a particular task has ten assertions with a
multiplication in the condition, resource sharing could
potentially share a single multiplier among all the assertions.

Although resource sharing is a common HLS opti-
mization [23] for individual tasks, sharing resources across
assertions adds several challenges due to the requirement
that all statements sharing resources must be guaranteed to
not require the resources at the same time. For task-graph-
based applications, assertions may occur in different tasks
at different times, which prevents a HLS tool from statically
detecting mutually exclusive execution of all assertions.

Due to this limitation, HLS can potentially apply
existing resource-sharing techniques to assertions within
nonpipelined regions of individual tasks, because those
assertions are guaranteed to not start at the same time.
However, due to the assertion parallelization optimization,
different starting times for two assertions do not guarantee

that their execution does not overlap. For example, an
assertion with a complex condition may not complete
execution before a later assertion requires a shared resource.
To deal with this situation, HLS can implement all assertions
that share resources as a pipeline that can start a new
assertion every cycle. Although this pipeline will add latency
to all assertions in the same task that require access to the
shared resources, such latency does not affect the application
and only delays the notification of program failure. This
technique of pipeline assertion checking is evaluated in
Section 7.2.1.

Resource sharing could potentially be extended to sup-
port an arbitrary number of simultaneous assertions in
multiple tasks by synthesizing a pipelined assertion checker
circuit that implements a group of simultaneous assertions.
To prevent simultaneous access to shared resources, the
circuit could buffer data from different assertions using
FIFOs (e.g., one buffer per assertion) and then process
the data from the FIFOs in a round-robin manner. This
extension requires additional consideration of appropriate
buffer sizes to avoid having to stall the application tasks
and an appropriate partitioning of assertions into assertion
checker circuits, which we leave as future work.

In some cases, resource sharing may improve perfor-
mance in addition to reducing area overhead by enabling
placement and routing to achieve a faster clock due to fewer
resources. However, resource sharing will at some point
experience diminishing returns and may eventually increase
clock frequency due to a large increase in multiplexers and
other steering logic.

4. In-Circuit Timing-Analysis Assertions

For applications with real-time requirements, particularly
in embedded systems, verification must guarantee that
all timing constraints are met (a process referred to as
timing analysis) in addition to checking the correctness of
application behavior. If an HLS-generated application does
not meet timing constraints during execution, then it would
be helpful to know the location of the section of code that
is violating constraints in order to focus optimization effort.
However, determining the performance of an HLS-generated
application can be difficult. HLS tools, such as Impulse-
C and Carte, provide some compile-time feedback about
the rate and latency of a pipelined loop, but it is largely
unknown how many cycles a particular line of code will
require. While it is possible to determine the number of
cycles a line (or lines) of code will take by examining the
HDL generated by the tool, delay can be data dependent,
as shown in the possible traversals of the state machine
generated by the evaluation of the conditional statement
i f (( j <= 0 || a[0] == i)&&(b[0] == 2 || i > 0))
in Figure 3). However, such a process requires significant
designer effort and requires the designer to have knowledge
of the HLS-generated code. While a delay range for the
computation in each line of code could be provided by the
HLS tool via static analysis, the delay of communication
calls cannot be determined by static analysis. Software
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simulation cannot provide accurate timing due to timing
differences between thread execution on the microprocessor
and execution on the FPGA. In this section, we describe the
additional concepts and methods needed to extend in-circuit
assertions to perform timing analysis for applications built
with HLS tools.

Figure 5 illustrates usage of timing-analysis assertions for
an audio filtering application designed with a HLS tool. In
this example, the application designer has determined that
the filter takes too long to execute on the FPGA by measuring
the time to run the application on the FPGA. However,
the application designer is unsure of which part of the
application in the FPGA is not meeting timing constraints.
Using timing-analysis assertions, the application designer
can check the timing of different application regions in the
FPGA, as shown in the figure in addition to the case study in
Section 7.5. Data-dependent delays can be checked to see if
they are within bounds for each loop iteration. Although not
shown in the figure, the same method can be used to check
streaming communication calls for delays caused by buffers
becoming full or empty.

In order to enable ANSI-C assertions to check the timing
of an application, time must be accessible via a variable. In C,
time is typically determined via a function call. In Figure 5,
the ANSI-C function, clock, is used to return the current time
in cycles. To measure the time of a section of code, the clock
function should be called before and after that section of
code, with the difference between the two times providing
the execution time (in cycles). To perform timing analysis,
an assertion can be used to check a comparison between
the expected time and the measured time. For example, in
Figure 5, the code in the loop for each filter is expected to
take less than 100 cycles.

For timing-analysis assertions, time can potentially be
represented in many different formats. However, returning
time in terms of cycles will require the least amount of over-
head. The ANSI-C library provides the clock timing function
that returns the number of clock ticks that have elapsed
since the program started. However, for C programmers who
may want to express time in terms of seconds rather than
cycles, the ANSI-C constant expression CLOCKS PER SEC
can be used to convert clock ticks to time in seconds.
The clock frequency of the FPGA could be determined by
comparison with timestamps sent from the CPU. However,
an assertion may need to be checked on the first cycle after an
FPGA restart. Since determining the frequency of the FPGA
automatically could take too long, a preprocessor constant
FPGA FREQ is used to define the FPGA frequency in Hz.

The type defined for representing clock ticks in ANSI-C is
clock t that typically corresponds to a long integer. For added
flexibility when used in hardware, time can be returned and
stored as a 32-bit or 64-bit value. A 64-bit value is used by
default. To select a 32-bit value, the preprocessor constant
CLOCK T 32 must be defined in the code. A 32-bit value can
be used to reduce overhead but will overflow after 43 seconds
for a clock speed of 100 MHz. During software simulation,
the assertions using timing information are ignored, which
allows simulation to check correctness of the application
while ignoring the timing of the microprocessor.

To enable synthesis of timing assertions, a counter, which
is set to zero upon reset, is added in each hardware process
that contains a clock statement. The value returned by the
clock statement is generated by latching the counter signal for
each transition of the state machine. Use of a latched counter
signal ensures that the timer value is consistently taken at the
beginning of each state transition for states that execute more
than one cycle.

One potential problem with this approach is that HLS
tools often reorder statements to maximize parallelism.
Therefore, clock statements could potentially be reordered
leading to incorrect timing results. However, such a problem
is easily addressed by making a synthesis tool aware of
clock statements. In this paper, we alternatively evaluated
the techniques using instrumentation due to the inability
to modify commercial HLS tools. Although instrumentation
could experience reordering problems, for the evaluated
examples, reordering of clock statements did not occur.

5. Hang-Detection Assertions

A common problem with FPGA applications is a failure
to finish execution, which is often referred to as hanging.
Common causes of hanging include infinite loops, syn-
chronization deadlock, blocking communication calls that
wait indefinitely to send or receive data, and so forth.
Determining the cause of a hanging application, referred
to as hang detection, is difficult for HLS-generated FPGA
designs. While a debugger could be used to trace down
the problem during software simulation, the inaccuracies
of software simulation can miss hangs that occur during
FPGA execution. To deal with this problem, we extend in-
circuit assertions to enable hang detection for HLS-generated
application.

One challenge of hang detection using assertions is that it
is assumed that the assertion will eventually be checked. If the
application waits indefinitely for a line of code to finish (e.g.,
an infinitely blocking communication call) then a different
detection method is needed, since the assertion after the
hung line will never be executed as shown in Figure 6(a).
Without some mechanism to alert the developer to the cur-
rent state of the program, it will be difficult to pinpoint the
problem. For example, in the filter application (see Figure 7),
the source of the problem that is causing the application to
hang could be in any of the software or hardware processes.

One potential solution is to use assertions in a counter-
intuitive way by adding assertions periodically throughout
the code that are designed to fail (i.e., assert(0)). By also
defining the NABORT flag, failed assertions will not cause the
application to abort, which allows the developer to manually
create an application heartbeat (i.e., a signal sent as a
notification that the process is alive) that traces the execution
of the application on the FPGA as shown in Figure 6(b).
In the filter application example, multiple assertions would
need to be placed in strategic locations in each FPGA process
to determine the events that take place before the application
hangs. The resolution (in terms of lines of code) would be
determined by how many assertions are used. Unfortunately,
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if a large number of assertions are used, then large amounts
of communication and FPGA resources could be used by
the assertions. Although this approach works, it requires
significant designer effort and has large overhead.

To reduce effort and overhead, we present a more
automated method of hang detection that does not require
user instrumentation and instead uses watchdog timers to

monitor the time between changes of the signals that repre-
sent the state of the hardware process. The monitoring circuit
has software-accessible registers that contain the current state
of all hardware process and the state of any hardware process
that it has detected as hung. Hang detection is triggered using
a watchdog timer for a hardware process that signals when
a state takes longer than a user-defined number of cycles;
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the assertion pragma, #pragma assert FPGA watch dog, sets
this timeout period, which is reset anytime a state transition
occurs. The watchdog timer is sized to be just large enough
to hold the cycle count given in the pragma to reduce FPGA
resource and frequency overhead. In software, a separate
thread is spawned to monitor the hardware hang detector
to check for hung states (i.e., expired watchdog timers). If
a hardware process has hung, then the state in the registers is
matched to the corresponding line of code via a lookup table
generated by parsing an intermediate translation file (both
Impulse C and Carte create these files). The state of all other
hardware processes are given for reference.

In software, many HLS applications will wait indefinitely
at some point in its execution for the FPGA to respond
with some form of communication or synchronization. For
those applications, hangs caused in the FPGA hardware will
also cause the software to hang on the communication or
synchronization API call for the FPGA. Although traditional
debugging tools can be used to detect these hangs in software,
software hang detection is provided to monitor the HLS API
calls for convenience. A thread is spawned for all API calls of
the HLS tool. The thread will check if the API call finishes
within a time period set by the assertion pragma, #pragma
assert API watch dog. If the API call takes longer than the
timeout period, then the current line of code for the API call
and all hardware processes will be printed to standard output
and the program will abort.

This automated approach simplifies the addition of hang
detection to an application, as shown for the filter application
in Figure 7 and case study in Section 7.6, compared to man-
ually adding assert(0) statements. Two assertion pragmas
are added to the application before instrumentation to set
the watchdog timeout periods in hardware and software.
Although hangs can be caused by the interaction between
two or more (hardware or software) processes, providing the
state of the hung process along with the current state of all
other hardware processes can greatly narrow down the source
of problem.

Several improvements can be added to further enhance
hang detection of HLS applications. The feedback given to
the application developer can be increased by reporting more
than the last state of each process in the FPGA. For example,
a trace buffer could be added of a user-defined size that
would capture the sequence of state that occurred before the
hardware process hung. Also, infinite loops in a hardware
process will only trigger software API hang detection. Since
infinite loops will not stay in a single state to trigger the hang-
detection method mentioned above, detection of infinite
loops in hardware could also be incorporated by adding a
second counter for each process that is dedicated to counting
the number of cycles spent in states that are known to be
inside one or more loops. The overhead of hang detection
could be reduced by allowing the user to select which
processes to monitor. The hang detection counters could
be removed for some or all processes, while still allowing
the current state of the process to be periodically retrieved
or retrieved by software API hang detection. This approach
would give the user the option to customize hang detection
to fit for designs that nearly fill the FPGA.

6. Assertion Framework

To evaluate the assertion-synthesis techniques, we created a
prototype tool framework for Impulse-C that implements
the techniques via instrumentation of HLL and HDL code.
It should be noted that we use instrumentation because we
are unable to modify the proprietary Impulse-C tool. All of
the techniques are fully automatable and ideally would be
directly integrated into an HLS tool.

6.1. Unoptimized Assertion Framework. To implement basic
in-circuit assertion functionality, the framework uses HLL
instrumentation to convert assert statements into HLS-
compliant code in three main stages. First, the C code for the
FPGA is parsed to find functions containing assertion state-
ments, converting any assertion statements to an equivalent if
statement. A false evaluation produces a message that will be
retrieved from the FPGA by the CPU, uniquely identifying
the assertion. Next, communication channels are generated
to transfer these messages from the FPGA to the CPU. Finally,
the assertion notification function is defined as a software
function executing on the CPU to receive, decode, and
display failed assertions using the ANSI-C output format. An
example of this automated code instrumentation is shown in
Figure 8.

To notify the user of an assertion failure, the framework
uses an error code that uniquely identifies the failed assertion
based on the line number and file name of the assertion.
Once the assertion notification function decodes the asser-
tion identifier, the user is notified by printing to the standard
error stream by the CPU for the current framework. The
framework could be extended to work without a CPU by
having the assertion identifier stored to memory, displayed
on an LCD, or even flashed as a sequence on an LED by
the FPGA. Alternatively, an FPGA could potentially use a
softcore processor.

Note that other changes are needed to route the stream
to the CPU, such as API calls to create and maintain the
stream. The stream must also be added as a parameter
to the function. The output of the framework is valid
Impulse-C code, allowing further modifications to the source
code with no other changes to the Impulse-C tool flow.
Once verification of the application is finished, the constant
NDEBUG can be used to disable all assertions and reduce
the FPGA resource overhead for the final application. An
additional nonstandard constant NABORT can be used to
allow the application to continue instead of aborting due to
an assertion failure.

6.2. Assertion Framework Optimizations. In order to evaluate
the optimizations presented in Section 3, a hybrid mix
of manual HLL and HDL instrumentation was used. To
enable assertion parallelization (Section 3.1), the framework
modifies the HLL code to move assertions into a separate
Impulse-C process. The framework introduces temporary
variables to extract data needed by the assertion. HDL
instrumentation then connects the temporary variables and
trigger conditions between processes. The results of this
optimization can be found in Section 7.2.
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#pragma assert FPGA watch dog 100000000

#pragma assert API watch dog 1000000

Figure 7: Using hang-detection assertions with a filter application.

int identifier = 17;
co stream write(stream name,

& identifier, sizeof(int32));

Source Code (hardware)

co stream read(stream name,
& identifier, sizeof(int32));

case 17:

assert(a[0] != 1); // line 17

Conversion (hardware)

Conversion (software)

if(!(a[0] != 1)){

}

switch(identifier) {

fprintf(stderr,“memtest hw.c:17:”
“Assertion ’a[0] != 1’ failed.\n”);

Figure 8: HLL assertion instrumentation.

Resource replication, described in Section 3.2, was per-
formed using manual HLL instrumentation. An extra array
was added to the source code that performed the same writes
as the original array but reads were only performed by the
assertion, as shown in Section 7.3.

The following manual hybrid instrumentation was used
to evaluate resource sharing as described in Section 3.3.
Although resource sharing could potentially be applied
to any shared resource, we evaluate the optimization for
shared communication channels, which are common to all
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Impulse-C applications. HLL instrumentation creates a
streaming communication channel per Impulse-C process
and sends the identifier of the assertion upon assertion
failure. Creating a streaming communication channel per
Impulse-C process can become expensive in terms of
resources if a large number of Impulse-C processes contain
assertions. To reduce the number of streams created for
each process, a single bit of the stream is used per assertion
to indicate if an assertion has failed. This technique allows
Impulse-C processes to more efficiently utilize the streaming
communication channels. When streaming communication
resources are shared, a separate process is created via HLL
instrumentation that can handle failure signals from up to
32 assertions per process if a 32-bit communication channel
is used. For example, if all 32 assertions fail simultaneously,
then all 32 bits of the communication channel will simul-
taneously be asserted. The failure signals are connected to
assertions using HDL instrumentation for efficiency. The
overhead reduction associated with using this technique is
explored in the case study that is presented in Section 7.4.

6.3. Timing-Analysis and Hang-Detection Extensions. Semi-
automatic hybrid instrumentation was used to support
timing functions presented in Section 4. Impulse-C does not
support ANSI-C library calls so the clock function calls must
be removed. A placeholder variable is declared and used
in place of the clock statement in the source code. After
hardware generation, a Perl script is used to instrument the
HDL. A counter is added in each hardware process that
contains a clock statement, which is set to zero upon reset. A
second signal is added to the process that latches the counter
signal upon transition of the state machine. The placeholder
variable, synthesized into a signal with a similar name in
HDL, is replaced with the latched counter signal.

Semiautomatic hybrid instrumentation was used for
hang detection in Section 5. For software hang detection, a
wrapper was added around each of the Impulse-C library API
calls which added the threaded hang detection. The modified
software API calls required extra parameters for access to the
hardware hang-detection registers. Automatic parsing of the
xhw file generated by Impulse-C allows states to be converted
to line numbers. For hardware hang detection, a hardware
process supporting register transfer to software is automat-
ically added to the source code. After Impulse-C generates
the HDL, the state machine signals of all other hardware
processes are automatically routed into the hang-detection
process. The hang-detection circuit is then manually added
by overwriting part of the register transfer process.

Although many of the steps for adding timing-analysis
and hang-detection instrumentation were manual, all of
the steps could be automated via Perl scripts. Ideally,
modification to the Impulse-C tool would be made instead
of instrumenting source and intermediate code. However,
because Impulse-C is proprietary, such modification was not
possible for this work.

6.4. HLS Tool and Platform. The framework currently
uses Impulse-C. Impulse-C is a high-level synthesis tool

to convert a program written in a subset of ANSI-C to
hardware in an FPGA. Impulse-C is primarily designed
for streaming applications based upon the communicating
sequential process model but also supports shared memory
communication [5]. Speedups can be achieved in Impulse-
C applications by running multiple sequential process in
parallel, pipelining loops, and adding custom HDL-coded
functions calls.

Quartus 9 was used for synthesis, and implementation of
the Impulse-C-generated circuits. The target platforms are
the XtremeData XD1000 [24] containing a dual-processor
motherboard with an Altera Stratix-II EP2S180 FPGA in
one of the Opteron sockets and the Novo-G supercomputer
[25] at University of Florida containing 48 GiDEL PROCStar
III [26] cards each with four Stratix-III EP3SE260. Impulse
C 3.3 is used for the XD1000 while Impulse-C 3.6 with
an in-house platform support package is used for Novo-G.
Although the XD1000 and Novo-G are high-performance
computing platforms, Impulse-C also supports embedded
PowerPC and MicroBlaze processors [5]. Furthermore,
Novo-G and the XD1000 are representative of FPGA-based
embedded systems that combine CPUs with one or more
FPGAs. The presented overhead results would likely be
similar for other embedded platforms, assuming similar
Impulse-C wrapper implementations.

Although we currently evaluate HLS assertions using
Impulse-C, the techniques are easily extended to support
other languages. For example, in Carte, Impulse-C’s stream-
ing transfers would be replaced with DMA transfers. The
software-based assertion notification function (see Figure 1)
would then need to monitor Carte’s FPGA function calls
for failed assertions as opposed to monitoring Impulse-C’s
FPGA processes.

7. Experimental Results

This section presents experimental results that evaluate the
utility and overhead of the presented assertion synthesis,
timing analysis and hang detection. Section 7.1 motivates
the need for in-circuit assertions by illustrating a case study
where assertions pass during simulation but fail during
FPGA execution. Section 7.2 illustrates the performance
and overhead improvements of the assertion parallelization
optimization. Section 7.3 evaluates performance benefits of
resource replication. Section 7.4 evaluates the scalability of
assertions in terms of resource and frequency overhead
by applying resource sharing optimizations to the com-
munication channels. Section 7.5 presents the overhead of
using assertions for timing analysis. Section 7.6 evaluates two
hang-detection methods used on an application that fails to
complete.

The designs used in the case studies occupy a relatively
small part of the FPGA (24% of logic used in Section 7.5).
Designs with higher resource utilization may lead to greater
performance degradation and resource overhead of asser-
tions due to increased difficulty in placement and, routing
for example. In addition, resource replication might not be
applicable for designs that are almost full.
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1 co unit64 c2, c1;
2 co int32 address, array[20], out;
3 c2 = 4294967286; c1 = 4294967296;
4 if (c2 > c1) address = c2 – c1;
5 else address = 0;
6 assert(address >= 0);
7 out = user(address);
8 assert((30 > out) && (out > 20));
9 array[address] = out;

Algorithm 1: In-circuit verification example.

7.1. Detecting Simulation Inconsistencies. In this section,
we illustrate how assertions can be used for in-circuit
verification and debugging to catch inconsistencies between
software simulation and FPGA execution of an application.
The code in Algorithm 1 shows how assertion statements
can be used for in-circuit verification by identifying bugs
not found using software simulation. The first assertion is
used to detect a translation mistake from source code to
hardware (it is possible for a translation mistake to also have
an effect on an assertion) . The assertion statement (line
6) never fails in simulation but fails when executed on the
XD1000 platform. Upon inspection of the generated HDL,
it is observed that Impulse-C performs an erroneous 5-bit
comparison of c2 and c1 (line 4). The 64-bit comparison
of 4294967286 > 4294967296 (which evaluates to false)
becomes a 5-bit comparison of 22 > 0 (which evaluates to
true), allowing the array address to become negative (line 4).
In contrast, the simulator executing the source code on the
CPU sets the address to zero (line 5). Impulse C will generate
a correct comparison when c1 and c2 are 32-bit variables.

The second assertion (line 8) is used to check the output
of an external HDL function (line 7), which is used to
gain extra performance over HLS generated HDL. When an
external HDL function is used, the developer must provide
a C source equivalent for software simulation. However, the
behavior and timing of the C source for simulation may
differ from the behavior of the external HDL function during
hardware execution, again demonstrating a need for in-
circuit verification.

For demonstration purposes, this example case is inten-
tionally simplistic and similar conclusions could be drawn
using a cycle-accurate HDL simulator. However, in practice,
inconsistencies caused by the timing of interaction between
the CPU and FPGA would be very difficult to model in a
cycle-accurate simulator.

7.2. Assertion Parallelization Optimization. This section
provides results for the parallelization optimization of
assertions. Section 7.2.1 shows improvements from opti-
mization for Triple-DES encryption. Section 7.2.2 shows
optimization improvements for edge-detection. While the
applications in the previous sections evaluate frequency
overhead, Section 7.2.3 evaluates state machine performance
overhead (in terms of additional cycles) and optimization
improvements.

Table 1: Triple-DES assertion overhead.

EP2S180 Original Assert Difference

Logic used 13677 13851 +174

(out of 143520) (9.53%) (9.65%) (+0.12%)

Comb. ALUT 7929 8025 +96

(out of 143520) (5.52%) (5.59%) (+0.07%)

Registers 10019 10055 +36

(out of 143520) (6.98%) (7.01%) (+0.03%)

Block RAM 222912 223488 +576

(9383040 bits) (2.37%) (2.38%) (+0.01%)

Block interconnect 24657 24878 +221

(out of 536440) (4.60%) (4.64%) (+0.04%)

Frequency (MHz) 145.7 142.0 −3.7 (−2.54%)

7.2.1. DES Case Study. The first application case study
shows the area and clock frequency overhead associated
with adding performance optimized assertion statements
to a Triple-DES [27] application provided by Impulse-C,
which sends encrypted text files to the FPGA to be decoded.
Two assertion statements were added in a performance
critical region of the application to verify that the decrypted
characters are within the normal bounds of an ASCII text
file. Table 1 shows all sources of overhead, including the
streaming communication channels generated by Impulse-C
for sending failed assertions back to the CPU. The overhead
numbers were found to be quite modest, with resource usage
increasing by at most 0.12% of the device and the maximum
clock frequency dropping by less than 4 MHz.

For this case study, the optimized assertions were checked
in a separate pipeline process to reduce the overhead
generated by the assertion comparison. Assertion failures
are sent by another process to ensure that assertions can
be checked each cycle. The state machine of the application
remained unchanged because the optimized assertions were
checked in a separate task working in parallel with the
application. Since the application’s state machine remained
the same, the only performance overhead comes from the
maximum clock frequency reduction. The resource overhead
for optimized assertions actually decreased as compared
to unoptimized assertions. The ALUT (Adaptive Look-Up
Table) and routing resources needed by Quartus to achieve
a maximum frequency of 144.7 MHz for unoptimized asser-
tions was 0.06% greater than the ALUT and routing resources
need for optimized assertions that achieved a maximum
frequency of 142 MHz.

7.2.2. Edge-Detection Case Study. The following case study
integrates performance optimized assertions into an edge-
detection application. The edge-detection application, pro-
vided by Impulse-C, reads a 16-bit grayscale bitmap file on
the microprocessor, processes it with pipelined 5 × 5 image
kernels on the FPGA, and streams the image containing edge-
detection information back. Since the FPGA is programmed
to process an image of a specific size, two assertions were
added to check that the image size (height and width)
received by the FPGA matches the hardware configuration.
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Table 2: Edge-detection assertion overhead.

EP2S180 Original Assert Difference

Logic used 12250 12273 +23

(out of 143520) (8.54%) (8.56%) (+0.02%)

Comb. ALUT 6726 6809 +83

(out of 143520) (4.69%) (4.75%) (+0.06%)

Registers 9371 9417 +46

(out of 143520) (6.53%) (6.56%) (+0.03%)

Block RAM 141120 141696 +576

(9383040 bits) (1.50%) (1.51%) (+0.01%)

Block interconnect 19904 19994 +90

(out of 536440) (3.71%) (3.73%) (+0.02%)

Frequency (MHz) 77.5 79.3 +1.8 (+2.32%)

The assertions were added in a region of the application
that was not performance critical. As shown in Table 2, the
overhead numbers for this case study were also modest, with
resource usage increasing by at most 0.06% on the EP2S180.

For the edge-detection case study, the optimized asser-
tions were checked in a separate process to reduce the
overhead generated by the assertion comparison. Since
the applications state machine remained the same, and
maximum clock frequency did not reduce, the application
did not incur any performance overhead due to the addition
of the assertions. The frequency increase is likely due to
randomness in placement and routing results of similar
designs. The performance optimization of the assertions
increased ALUT resource utilization from 0.03% to 0.06%
on the EP2S180.

7.2.3. State Machine Overhead Analysis. This section presents
a generalized analysis of performance overhead caused
by adding assertions with a single comparison and the
performance improvement via optimizations. The results
in this section present overhead in terms of cycles and
exclude changes to clock frequency, which was discussed
in the previous section. We evaluate single-comparison
assertions to determine a lower bound on the optimization
improvements. To measure the performance overhead of
adding assertions, we examine the state machines and
pipelines generated by Impulse-C. Impulse-C allows loops
(e.g., for loops or while loops) to be pipelined. Assertions
added to a pipeline can modify the pipeline’s characteristics.
Each pipeline generated by Impulse-C has a latency (time
in cycles for one iteration of a loop to complete) and rate
(time in cycles needed to finish the next loop iteration).
Assertions that are not in a pipelined loop will add latency
(i.e., one or more additional states) to the state machine
that preserves the control flow of the application. As stated
in Section 6.2, assertions can be optimized to reduce or
eliminate the overhead of assertions in terms of additional
clock cycles required to finish application execution. These
optimizations move the comparisons to a separate Impulse-
C process so that they can be checked in parallel with
the application. Any remaining clock cycle overhead after

Table 3: Single-comparison assertion.

Latency Overhead

Assertion data structure Unoptimized Optimized

Scalar variable 1 0

Array (non-consecutive) 1 0

Array (consecutive) 2 1

Table 4: Pipelined single-comparison assertion.

Overhead

Unoptimized Optimized

Assertion data structure Latency Rate Latency Rate

Scalar variable 1 1 0 0

Array 2 1 1 0

optimization comes from the data movement needed for
assertion checking.

Table 3 shows the latency overhead for nonpipelined,
single comparison assertions. In most cases, assertions with
these comparisons will increase latency by one cycle. With
optimizations, this latency overhead is reduced to zero since
extracting data in most cases will not add latency to the
application. In the case where an array is consecutively
accessed temporally by the application and an assertion,
an unoptimized assertion will have a latency overhead of
two cycles because of block RAM port limitations. With
optimizations, this latency overhead is reduced to one cycle
to extract data from the array or block RAM. For more
complex assertions, the latency will increase for unoptimized
assertions while the latency for optimized assertions will
remain the same, as seen when comparing Figures 3 and 4.
Even with the multiple array accesses in assert(( j <= 0 ||
a[0] == i)&&(b[0] == 2 || i > 0)), only one cycle is needed
to retrieve the array data.

Table 4 shows pipeline latency and rate overhead
observed for a single comparison. Adding an unoptimized
assertion using a scalar variable to a pipelined loop increased
the latency from 2 to 3, resulting in an overhead of one cycle,
and degraded the rate from 1 to 2 for the pipeline. Although
the rate overhead was a single cycle, this corresponds to a 2x
slowdown in performance because the throughput is reduced
to half of the original loop. This overhead comes from
adding a streaming communication call. For the optimized
assertion, the streaming communication call was moved to a
separate process that reduced the latency and rate overhead
to zero, resulting in a 2x speedup compared to the unop-
timized assertions. For assertions using arrays in pipelined
loops, adding an assertion caused a 2-cycle latency overhead
that increased the latency from 2 to 4. The assertion reduced
the rate from 2 to 3, which is a one cycle rate overhead that
corresponds to a 50% reduction in performance.

7.3. Resource Replication Optimization. As mentioned in
Section 7.2.3, Table 4 shows pipeline latency and rate over-
head observed for a single comparison. For assertions used
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in pipelined loops checking an array data structure, the
assertion overhead was reduced via resource replication by
adding an additional array to the process dedicated read
access to the assertion as described in Section 6.2. With a
duplicate array, only the latency increased from 2 to 3 and
the rate remained the same which corresponds to a 33%
rate improvement over the nonoptimized version. A similar
improvement could be gained for a nonpipelined assertion
that checks multiple indexes to the same array.

7.4. Resource Sharing Optimization. This section demon-
strates the improvement in scalability from resource sharing
optimization techniques. We evaluate scalability by measur-
ing the resource and clock frequency overhead incurred by
adding assertions to a large number of Impulse-C processes,
providing an extremely pessimistic scenario in terms of
overhead. A single assertion is added per process which
results in a separate streaming communication channel for
each process. A single greater than comparison is made
per process, generally requiring only minor changes to the
process state machine. In this study, the application consists
of a simple streaming loopback as shown in Figure 9. The
loopback also stores the value and retrieves the value at each
stage. Each process added to the application adds an extra
stage in the loopback (e.g., for 4 FPGA processes shown as L
in Figure 9, incoming data would be passed from the input
to the FPGA, passing through each of the processes before
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being returned to the CPU). The assertion in each process
ensures the number being passed is greater than zero. Each
process adds overhead in terms of an assertion shown as A in
Figure 9 and an extra Impulse-C streaming communication
channel shown as C in Figure 9 to notify the CPU of failed
assertions. For a 32-bit stream, up to 32 assertions can be
connected to the streaming communication channel before a
new streaming communication channel is needed.

Using the previously discussed straightforward conver-
sion of assert statements to if statements, the unoptimized
assertions with 128 processes (128 assertions) had a resource
overhead on the EP2S180 of 4.07% ALUTs (the highest
resource percentage overhead). However, the maximum
frequency decreased from 190 MHz for the 128-process
original application to 154 MHz or an 18.8% overhead as
shown in Figure 10 for the 128-process application with
unoptimized assertions.

By applying the resource sharing optimization only to
the communication channels so that only a single bit of
the stream is used per assertion as described in Section 6.2
(and not the assertion resources), the resource overhead
was decreased. The resource overhead on the EP2S180, as
shown in Figure 11, was reduced to 1.34% of ALUTs or
over a 3x improvement for the 128-process application with
assertions. Assertion optimizations increased the maximum
frequency for the 128-process application to 189 MHz, as
shown in Figure 10, which represents over an 18% improve-
ment. The frequency of the application with assertion
optimizations (189.3 MHz) was very close to the original
application’s frequency of 190.6 MHz. While the resource
usage increased consistently for all three tests (original,
unoptimized, and optimized) from 1 to 128 processes,
the maximum frequencies reported by Quartus did not
consistently decrease as the number processes increased until
32 processes were added. The frequency overhead decreased
from 32 to 128 processes with optimized assertions because
the application added one stream per process, while the
assertions only added one stream per 32 processes since 32-
bit streaming communication was used. This demonstrates
the benefits of the resource sharing optimization for stream-
ing communication channels.
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7.5. In-Circuit Timing Analysis. This section provides a
case study showing the utility and overhead of adding
assertions with timing statements to a backprojection appli-
cation. Backprojection is a DSP algorithm for tomographic
reconstruction of data via image transformation. For the
backprojection application, instrumentation was added into
a nested loop (see Algorithm 2). Two 32-bit timing calls
were added around the inner pipelined loop to measure
the time required for the pipelined loop to finish gen-
erating 512 pixels. After the timing calls, ten assertions
were added to find the maximum time required for the
pipelined loop to finish for all outer-loop iterations. Since
the inner loop has 512 iterations, a minimum of 512
cycles should be needed to complete the loop; however,
more cycles could be required for stalls and flushing of
the pipeline. To test these assumptions, ten assertions were
added to check the timing of the loop with exponentially
increasing maximum times and NABORT was defined to
stop the application from aborting. After execution, only
the first assertion passed evaluation, which means that the
maximum time for the inner loop is between 640 and 1023
cycles.

This technique allows the application designer to quickly
check timing in multiple regions of the application with
minimal disturbance to the application in terms of resource
and communication overhead. After evaluating the feedback
from the assertions, the application designer can modify
the application to stream back the exact timing values
for problematic regions of code. In addition, the assertion
feedback provided before modifying the application can be
used to make sure that the timing values streamed back are
valid. It is possible that the addition of large data transfers
could change the timing of the application.

The backprojection application runs on all four Stratix-
III EP3SE260 FPGAs on the GiDEL PROCStar III [26] card.
Overhead is only given for one FPGA since the image is
split between all four FPGAs. Ideally, a single assertion could
check an array of values in a loop for more compact code (see
Algorithm 3). However, that approach increases overhead
when synthesized with Impulse-C as shown in Table 6 as
compared to using individual assertions as shown in Table 5.

for(y=0;y<512;y++)
{

time1 =c1ock();
for(x=0;x<512;x++)
{//compute pixel
· · ·
}
time2=clock();
assert((time2-time1)<1024));
assert((time2-time1)<640));
assert((time2-time1)<576));
assert((time2-time1)<544));
assert((time2-time1)<528));
assert((time2-time1)<520));
assert((time2-time1)<516));
assert((time2-time1)<514));
assert((time2-time1)<513));
assert((time2-time1)<512));
· · ·

}

Algorithm 2: Adding timing assertions individually to backprojec-
tion.

int32 constraint[]={1024,640,576,544,528,520,516,514,
513,512};
· · ·
for(y=0;y<512;y++)
{

time1=clock();
for(x=0;x<512;x++)
{//compute pixel
· · ·
}
time2=clock();
for (i=0; i<10; i++){

assert(time2-time1< constraint[i]);
}
· · ·

}

Algorithm 3: Adding timing assertions in a loop to backprojec-
tion.

For individual assertions, no additional block RAM was used
since assertion failures were transferred via registers rather
than using streaming communication on the PROCStar
III. The logic overhead of 0.7% is the highest of all the
application case studies but is reasonable given that timing
calls and multiple assertions were used. The maximum
FPGA frequency stayed about the same with an insignificant
increase of 0.6 MHz. For a single assertion in a loop, the
overhead increased in all categories except for routing. The
additional overhead is likely caused by additional complexity
of the state machine and the usage of block RAM. The lower
routing overhead is probably due to only having to make
connections to a single assertion.
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Table 5: Individual backprojection timing assertion overhead.

EP3SE260 Original Assert Difference

Logic used 48285 49702 +1417

(out of 203520) (23.72%) (24.42%) (+0.70%)

Comb. ALUT 32962 33132 +170

(out of 203520) (16.20%) (16.28%) (+0.08%)

Registers 44098 44595 +497

(out of 203520) (21.67%) (21.91%) (+0.24%)

Block RAM 7114752 7114752 0

(15040512 bits) (47.30%) (47.30%) (0%)

Block interconnect 101317 102740 +1423

(out of 694728) (14.58%) (14.79%) (+0.20%)

Frequency (MHz) 131.9 132.5 +0.6 (+0.45%)

Table 6: Looped backprojection timing assertion overhead.

EP3SE260 Original Assert Difference

Logic used 48285 50169 +1884

(out of 203520) (23.72%) (24.65%) (+0.93%)

Comb. ALUT 32962 33459 +497

(out of 203520) (16.20%) (16.44%) (+0.24%)

Registers 44098 44657 +559

(out of 203520) (21.67%) (21.94%) (+0.27%)

Block RAM 7114752 7123968 9216

(15040512 bits) (47.30%) (47.37%) (0.07%)

Block interconnect 101317 102621 +1304

(out of 694728) (14.58%) (14.77%) (+0.19%)

Frequency (MHz) 131.9 131.3 −0.6 (−0.45%)

7.6. Hang Detection. This section shows how in-circuit
assertions can be used to detect when an application fails
to complete (i.e., hangs), even when software simulation
runs to completion. In an effort to speed up a decoder
and encoder version of the DES application described in
Section 7.2.1, modifications were made that caused the
application to complete in software simulation and yet hang
on the XD1000. Since Impulse-C does not support printf in
hardware, assertions were used to provide a heartbeat and
“trace” the execution of process on the FPGA. Although
this is not a common use of assertions in software, it can
be useful to use assertions as a positive indicator rather
than a negative indicator when an application is known to
crash or hang. Assert(0) statements were placed at important
points in the code for each FPGA process and NABORT
was defined to stop the application from aborting. The new
code with assertions added was executed via both software
simulation and execution on the target platform. After
comparing the line numbers of the failed assertions of both
runs, it was found that the hang occurred at a memory read,
which was causing the process to hang instead of exiting
a loop. By identifying the problematic line of code using
in-circuit assertions, we were able to debug the application
and determined that the memory read should have been
a memory write. This correction allowed the process to
complete execution.

Table 7: DES hang-detection overhead.

EP2S180 Original Assertion Difference

Logic used 21051 21739 +688

(out of 143520) (14.67%) (15.15%) (+0.48%)

Comb. ALUT 12986 13440 +454

(out of 143520) (9.05%) (9.36%) (+0.32%)

Registers 13884 14015 +121

(out of 143520) (9.67%) (9.77%) (+0.09%)

Block RAM 149184 149184 0

(9383040 bits) (1.59%) (1.59%) (0%)

Block interconnect 38924 40241 +1317

(out of 536440) (7.26%) (7.50%) (+0.25%)

Frequency (MHz) 78.8 77.0 −1.80 (−2.28%)

Next, automated hang detection was used on the same
problematic DES application. The software hang detector
was triggered by the timeout of a communication call. The
line number of the software API call was reported back along
with the line number (taken before the API call was made)
that the hardware process was currently executing. Although
hardware hang detection was working correctly in the FPGA,
the hardware hang detector was not able to notify the
application designer of the problematic line of code since the
software API call in conjunction with the erroneous line in
the hardware process caused all communication between the
CPU and FPGA to stop. To solve this problem, a sleep of one
second was place above the software API call that was notified
as being hung in previous run. The addition of the sleep
allowed the hardware hang detector to report back the exact
line number for the memory read that should have been a
memory write. The resource overhead of using automatic
hang detection on the Triple-DES application is shown in
Table 7. Hang detection had the highest, but still reasonable,
percentage of ALUT (0.32%) and routing (0.25%) overhead
because of the comparisons and connections made to the
state machine of the encoder and decoder hardware process.
The assertion pragma, #pragma assert FPGA watch dog, was
set to a timeout of a hundred million cycles which needed
a 30-bit timing register. When using a 64-bit register,
the frequency overhead increased to 5.7%. However, such
overhead is very pessimistic because even with a 10 GHz
clock speed, a 64-bit register supports a maximum timeout
of about 58 years. For more typical cases, the frequency
overhead should be less than 5.7%.

7.7. Assertion Limitations. The main limitation of in-circuit
assertions is that overhead is dependent on the complexity
of the assertion statements. For example, a designer could
potentially verify a signal processing filter using an assertion
statement that performs an FFT and then checks to see if a
particular frequency is below a predefined value. In this case,
the synthesized assertion would contain a circuit for an FFT,
which could have a large overhead. Note that such overhead
is not a limitation of the presented synthesis techniques, but
rather a fundamental limitation of in-circuit assertions.
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To minimize this overhead, we suggest certain coding
practices. Whenever possible, designers should use assertion
statements that compare precomputed values. Designers
should try to avoid consolidating assertions in loops with
comparison values stored in arrays because the unnecessary
usage of arrays and loops with assertions can increase
overhead as shown in Section 7.5. Designers should try to
avoid using many logical operators because these operators
can cause the HLS tool to create a large state machine to
check all combination possibilities of the assertion as shown
in Figure 3. By following these guidelines, the assertions
will require a minimum amount of resources. Assertion
parallelization optimization and resource replication opti-
mization can increase the resource overhead to reduce the
performance overhead. Accessing the same array multiple
times in an assertion (e.g., assert(a[i] > a[i − 1])) can be
costly either in terms of performance or resource depending
if resource replication optimization is used. Even accessing
an array only once in an assertion could be costly if the
application would normally be using the same array element
in the same clock cycle.

8. Conclusions

High-level synthesis tools often rely upon software simu-
lation for verification and debugging executing FPGA pro-
cesses as threads on the CPU. However, FPGA programming
bugs not exposed by software simulation become difficult
to remedy once the application is executing on the target
platform. Similarly, HLS tools often lack detailed timing-
analysis capabilities, making it difficult for an application
designer to determine which regions of an application
do not meet timing constraints during FPGA execution.
The assertion-based verification techniques presented in
this paper provide ANSI-C-style verification both for the
FPGA and CPU while in simulation and when executing
on the target platform. This approach allows assertions to
be seamlessly transferred from simulation to execution on
the FPGA without requiring the designer to understand
HDL or cycle-accurate simulators. The ability of assertions
to verify a portion of the application’s functionality and
debug errors not found during software simulation was
demonstrated. ANSI-C timing functions allowed assertions
to check application time constraints during execution.
Automated hang detection provided source information
indicating where software or hardware processes failed to
complete in a timely manner. Techniques were shown to
enable debugging of errors not found during software
simulation that incurred a small area overhead of 0.7%
or less and a maximum clock frequency overhead of less
than 3% for several application case studies on an EP2S180
and EP3SE260. The presented techniques were shown to be
highly scalable, reducing resource overhead of 128 assertions
by over 3x, requiring only 1.34% ALUT resources and
improving clock frequency by over 18%. The performance
overhead of optimized assertions was also demonstrated to
be low, with no performance impact observed in the edge-
detection case study in terms of frequency degradation or

increased cycle usage. A general analysis of performance for
single comparison assertions showed that the presented opti-
mizations resulted in a throughput increase ranging from
33% to 100%, when compared to unoptimized assertions,
potentially eliminating all throughput overhead. Future
work includes further exploration and automation of hang
detection.
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