
Using Hard Macros to Reduce FPGA
Compilation Time

Christopher Lavin, Marc Padilla, Subhrashankha Ghosh,
Brent Nelson, Brad Hutchings, and Michael Wirthlin

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

Email: {chrislavin, marcp, gho05002, brent nelson, brad hutchings, wirthlin}@byu.edu

Abstract—The FPGA compilation process (synthesis, map,
placement, routing) is a time-consuming process that limits
designer productivity. Compilation time can be reduced by using
pre-compiled circuit blocks (hard macros). Hard macros consist
of previously synthesized, mapped, placed and routed circuitry
that can be relatively placed with short tool runtimes and
that make it possible to reuse previous computational effort.
Two experiments were performed to demonstrate feasibility that
hard macros can reduce compilation time. These experiments
demonstrated that an augmented Xilinx flow designed specifically
to support hard macros can reduce overall compilation time by
3×. Though the process of incorporating hard macros in designs
is currently manual and error-prone, it can be automated to
create compilation flows with much lower compilation time.

I. INTRODUCTION

For years, hardware designers have looked on almost de-
spairingly at the rapid compile times of their software engi-
neering colleagues. While their software friends perform many
compile-debug-edit cycles per day, they are lucky to get one
per day, or sometimes, one per week. Faster implementation
times would ultimately translate into improved productivity
because hardware engineers would be able to test and debug
more designs per day—just like their software counterparts.
Unfortunately, FPGA implementation times are not getting
much faster, largely because devices keep getting bigger with
every generation.

One may argue, for verification purposes at least, that
compilation time can be avoided simply by using simulation
to verify correct function. Indeed, where possible, simulation
can and should be the tool of choice. Compile times for
simulators are similar in duration to conventional software
compiles and simulators provide more convenient observabil-
ity than FPGA devices. However, simulation executes RTL
approximately 1,000,000 times more slowly than silicon. For
complex designs, e.g., software radio, radar, print rendering,
etc., it often takes too long to verify functional correctness in
simulation. Engineers in these situations may initially perform
RTL verification with a simulator, but later, as simulation time
begins to be counted in days, these engineers start loading

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

their designs into FPGAs so their algorithms can be tested
in-system, with actual data.

Other researchers have tried various approaches for speed-
ing up place and route such as router parallelization [1],
multiphase placement [2], accelerated simulated annealing
[3][4], clustered hierarchical placement [5] [6], and accelerated
routing [7]. In contrast to the others, both [4], [5] and [6] con-
template trading faster FPGA build time for reduced quality of
result (QOR). In spite of all of these efforts, however, the place
and route times of commercial tools still curb the productivity
of hardware engineers by limiting them to 1–2 debug cycles
per day (or week) for computationally intense applications.

We believe it is unlikely that place and route times will ever
be on par with software compilation times. Simply put, placing
and routing circuits to meet timing and fit within the confines
of an FPGA, etc., is a far more complex and demanding
problem than software compilation. So what can be done?
Ultimately, the goal is to reduce the time it takes to implement
an FPGA design, i.e., go from RTL to download. One way to
achieve this end is to reduce the amount of computation that is
required to convert RTL to a bitstream by using pre-compiled
modules.

In software, pre-compiled modules take the form of large
pre-compiled libraries that need only be linked to the final
executable during the compile-debug-edit cycle. Pre-compiled
modules are widely used in software compilation flows and
they dramatically reduce build time by eliminating compila-
tion, e.g., reducing the computational effort required to build
a software application.

In hardware, pre-compiled modules are typically referred
to as “hard macros”. A hard macro is a module that has
been pre-compiled (previously synthesized/placed/routed) and
stored in a library for later use by a designer. If the majority
of a design consists of hard macros, the computational effort
required to implement the design should be far less than if the
design were compiled completely from scratch (not using pre-
compiled modules). In theory at least, it should be faster to
implement a design with hard macros. This paper is an early
feasibility study that tests this theory and tries to find initial
answers to these questions:



• Can the use of hard macros significantly reduce FPGA
compilation time?

• If so, how much can the use of hard macros reduce FPGA
compilation time?

The hard macro approach to design has the potential to
speed up nearly all phases of the design flow, including
synthesis, mapping, place, and route. It does this not by
superior algorithm or parallel processing, but by reusing
previous computational effort in a way similar to software
but with even greater potential benefits because more complex
FPGA processing flows require significantly more runtime
than software compilation.

Some work has been done in effort to obtain reusability
using hard macro-like cores to obtain faster FPGA compile
times. Horta and Lockwood [8] demonstrated the creation of
bitstream-based relocatable cores which are quite similar in
nature to hard macros. Similar efforts are made in [9] where
bitstream hard cores are used in a network on chip to provide
accelerated logic emulation and prototyping. Unfortunately,
using bitstream hard cores are much more restricted in that
they must reside between configuration boundaries and require
matching bus macro interfaces to be present both in the core as
well as in the existing FPGA configuration. Similar work by
Tessier [5] shows usage of pre-placed macroblocks accelerate
place and route by 2.6× over commercial tools. However, the
macroblocks did not include any routing information.

The remainder of this paper describes two experiments
that were performed to test the theory that hard macros can
accelerate FPGA compilation. The first experiment attempts
to insert hard macros into a standard Xilinx flow. The second
experiment is a “what-if” experiment that tests what might
be possible if the Xilinx flow were augmented with tools
specifically designed to support hard macros. The outcome
of both experiments is compared to a baseline case where no
hard macros are used. Results are compared for overall QOR
and differences noted in size, clock rate, and compilation time.

II. HARD MACRO-BASED DESIGN

In order to accelerate the Xilinx FPGA design flow, we
propose using hard macros as the basic design element for
all designs. That is, designs are constructed by assembling
together pre-placed and pre-routed hard macro blocks.

One of the obvious benefits of using hard macros, thus, is
that there is no need to run synthesis, mapping, or packing
when the design is assembled1. The removal of these three
steps of the design flow represent a signficant fraction of the
overall runtime. For example, in a typical EDK MicroBlaze
design, these three steps can take more than 75% of the total
implementation time as seen in Table I.

An additional benefit of using hard macros as a method for
faster design builds is that hard macros are relatively-placed
and routed. Thus, only the hard macro needs to be placed

1It should be clear that steps equivalent to synthesis, mapping, placement,
and routing must be completed to initially create the hard macros in the first
place. However, in the experiments described here, our focus is to understand
the benefits to be gained when hard macros are incorporated into a design.

TABLE I
RUNTIMES FOR CONVENTIONAL EDK 11.4 DESIGN FLOW OF

MICROBLAZE DESIGN ON VIRTEX 4 SX35

XST NGDBuild MAP PAR Bitgen Total Runtime
307s 13s 38s 76s 29s 7.7 minutes

(67%) (3%) (8%) (17%) (6%)

instead of all of its individual components. This ultimately
reduces the placement problem size significantly as a conven-
tional design may have thousands of primitive instances to
place, whereas a hard macro-based design may only have a
few dozen hard macros to be placed. Furthermore, hard macros
contain internal routing. Since the FPGA configuration rout-
ing fabric is generally homogeneous, pre-routed hard macros
should be able to be placed nearly anywhere on the device.
This also has the potential to significantly reduce the total
number of routes to be routed in a design.

A. Experiments with the Conventional Xilinx Flow
In order to understand how well such a hard macro-based

tool flow is currently supported by the Xilinx tools, we ran a
series of experiments. The first task in these experiments was
to build a set of hard macros which could then be assembled
into a design. Xilinx documents a method for creating hard
macros [10] using FPGA Editor. Although this is a manual
process, FPGA Editor can be scripted to some extent [11].

.vhd,
.v

XST
NGD
Build

MAP PAR .ncd

Conventional Xilinx Flow

XDL
–ncd2xdl

.xdl HMG .xdl XDL
–xdl2ncd

.nmc

Fig. 1. Hard Macro Creation Flow

To create a set of hard macros for use in our experiments, we
developed a Hard Macro Generator tool (HMG) and associated
flow. Specific hard macro generation programs have been
created before as in [12] and [11], however, to our knowledge,
a tool to create general hard macros from arbitrary RTL has
not been created before. All of our circuit manipulations
are performed in XDL (XDL is a human-readable format
equivalent to the more widely used NCD format). This flow
leverages the first four steps of the conventional Xilinx design
flow as shown in Figure 1. Using the conventional Xilinx tool
flow, we create a complete, placed and routed FPGA design
which contains just the circuitry for the hard macro we want
to create. After turning the design into XDL, our Hard Macro
Generator tool (HMG) then takes that design and converts it
into a stand-alone hard macro (top level IOBs are replaced
by hard macro ports among other transformations). The result
is an XDL representation of the hard macro which is then
converted to the Xilinx NMC format (the Xilinx hard macro
counterpart format to NCD).

To create complete designs we then created structural
VHDL which instanced these hard macros and then ran the



Xilinx tool flow on this VHDL from synthesis through place
and route. Since the design was an interconnected set of black
boxes in the VHDL there was no real synthesis performed
nor was there any mapping or packing done. Rather, the bulk
of the processing done by the Xilinx tools was to place and
route the hard macros we had previously built. (Caveat: a final
hard macro-based design flow would not use these steps of the
Xilinx flow but rather would directly combine, place, and route
the hard macros at the XDL level—we employed this VHDL
flow for our experiments only to make it possible to quickly
obtain results).

In all, a number of such tests were completed with varying
results. The sample designs used in these tests included a
QPSK demodulator as well as various designs created by
interconnecting various open source cores found on the web.
The results of these tests can be grouped into three categories:

1) For one collection of tests the design successfully placed
and routed, but the resulting tool chain time was signif-
icantly longer than an equivalent process starting from
a standard HDL-based design. As indicated in [10], it
is known that using hard macros actually causes Xilinx
PAR to run more slowly.

2) For another portion of the tests, no valid placement
for the hard macros in the design could be found and
the placement phase would fail. At times PAR would
fail with an error message and at other times place-
ment would simply never terminate within a reasonable
amount of time.

3) Finally, for some tests, placement would complete suc-
cessfully but the router would fail with an error message
that it could not route all the nets in the design.

These results suggest that, in spite of the intuitive advantages
that a hard macro-based design flow would seem to offer,
Xilinx PAR does not work well with such a flow. The results
further suggest that placement was the problem—either it
failed to place the designs, or it seemed to create an un-
routable placement.

B. Experiments with an Augmented Xilinx Flow

Our second set of experiments was designed to bypass the
Xilinx placement step to understand the router’s handling of
hard macros. To do so, the original VHDL-based structural
design was processed as before but only up to mapping and
packing. The result was an unplaced NCD file. The hard
macros were then placed by hand using a custom created XDL
macro placer tool. That is, we manually chose a placement and
then used an XDL-based tool of our own design to modify
the un-placed XDL design file to reflect that placement. The
resulting placed design was then passed to the Xilinx router
(PAR) for completion.

To make an accurate measurement of runtime improvement,
a baseline (non-hard macro) design was created for each test.
The baseline tool runtime was determined by the total runtime
of the tools from the designer’s original RTL implementation
(VHDL or Verilog files) to a fully placed and routed design
in NCD format. The baseline measurement omits bitstream

generation as this process cannot be accelerated due to the
proprietary nature of the bitstream (it consumes identical
run-time for both the experiment and baseline circuits). The
command line parameters to the Xilinx tools were set to obtain
the fastest runtime (ignoring timing constraints, standard effort
levels, and avoiding timing-based MAP).

The first design is a multiplier tree made of a 20 × 20
bit LUT-based multiplier with a pipeline depth of 5. The
Multiplier tree has 15 identical instances of the multiplier
where the arrangement of the multipliers is that of a binary
tree. This design was chosen to estimate the speedup that
a hard macro-based flow would produce when the synthesis
work load is small (the multiplier was synthesized only once).

The second design is a collection of five different cores:
CORDIC, AES decryptor, Twofish (a symmetric key block
cipher), FM Receiver, and Hilbert Analytic Filter. All cores
were placed in the design and connected together to form a
data-path with inputs and outputs connected to external IO
pins. Although this design has a smaller hardware footprint
than the multiplier tree, its heterogeneous nature implies that
more time will be spent during synthesis and will potentially
lead to increased speedup for the hard macro based flow.

C. Experimental Reductions in Run-Time

The baseline results for each design are shown in Table II.
All runtimes were obtained on a desktop workstation with
an Intel Core 2 Duo 3.0GHz (E6850) processor with 4GB
of RAM, running Windows XP Pro SP3 and Xilinx ISE
11.4. All designs targeted a Virtex 4 SX35 (xc4vsx35ff668-
10). Comparisons were made primarily on runtime, however,
clock rate and hardware utilization are included as well to
demonstrate the trade-offs between design runtime and QOR.

As can be seen in Table III, the hard macro designs were
both built 3.1× faster than their corresponding baseline build.
These results offer promise to a design flow created entirely
from hard macros and would enable significantly faster build
times. What is also notable about these results is that they are
two very different designs but both achieve the same speedup
by using hard macros. This could be caused by a floor on the
performance of PAR (actually, just the router since in these
experiments we did our own placement). That is, both hard
macro implementations took almost an identical amount of

TABLE II
BASELINE RUNTIMES FOR EACH TEST DESIGN

Design XST NGDBuild MAP PAR Total Runtime
Mult-Tree 46.7s 9.0s 17.7s 64.2s 137.5s

Heterogeneous 80.2s 4.9s 10.4s 35.5s 131.0s

TABLE III
RUNTIMES (AND SPEEDUP OVER BASELINE) FOR EACH TEST DESIGN

USING HARD MACROS

Design Custom XDL PAR Total Speedup
Placer 2NCD Runtime Over Baseline

Mult-Tree 4.3s 14.3s 25.7s 44.3s 3.1×
Heterogeneous 4.3s 12.1s 25.5s 41.9s 3.1×



time to run PAR. It is possible that for designs of a certain
size, PAR may not be able to execute much faster than about
25 seconds. If this were the case, it may be beneficial to create
a faster router for these kinds of situations.

D. Hard Macros and Quality of Results

The QOR of each circuit (as seen in Table IV) implemen-
tation is somewhat mixed. The multiplier tree baseline and
hard macro implementation have surprisingly similar hardware
utilization and maximum clock rates. This is an excellent result
as it shows (in some cases) that using hard macros will not
be much worse than using the Xilinx tools (when optimized
for runtime). However, the heterogeneous design baseline
produced a higher clock rate and significantly lower hardware
utilization. This is probably due to the fact that the synthesizer
was able to optimize some of the logic across the different
block boundaries leading to lower hardware utilization and
a higher clock rate. No such optimization is possible in the
hard macro implementation. It must be noted, that the Xilinx
tools were configured for the fastest runtime in all of the
experiments and it is likely that if configured for best quality
of result, clock rates of the baselines would be higher.

E. Hard Macros and Placement Time

Note that the runtimes measured in the augmented flow
included the time it took to route the hard macros together, but
not the amount of time it took to place them. Placement times
were assumed to be negligible for these experiments based
on the following analysis. Placement time for the hard macro
experiments can be estimated by assuming that placement
runtime behavior is approximately linear in the number of
design elements to be placed. The baseline designs consisted
of 4597 and 1757 slices and consumed 35.1s and 25.5s of
placement time, respectively (placement time was calculated
by running par with the -r option, which only runs the
placer). The hard macro designs consisted of 15 and 5 blocks.
Extrapolating using the linear-behavior assumption, placement
times can be estimated to be 0.11s and 0.07s, respectively, for
the hard macro experiments. Adding these values back into
the measured runtimes does not change the result from that
shown in Table III. This substantial reduction occurs because
the hard macro placer only places the top-level hard macros—
placement time for their constituent cells is eliminated as they
were previously placed and routed. Note that the presumption
of linear behavior is conservative. If the placer’s behavior is
super-linear, the hard macro approach will perform better than
this analysis indicates, relative to the baseline.

TABLE IV
COMPARISON OF CLOCK RATE AND HARDWARE UTILIZATION OF

BASELINE VS. HARD MACRO DESIGNS

Design Slices Clock Rate
Mult-Tree (baseline) 4592 148 MHz

Mult-Tree 4830 150 MHz
Heterogeneous (baseline) 1746 82 MHz

Heterogeneous 2741 61 MHz

III. CONCLUSION

The goal of this paper is to prove basic feasibility of using
hard macros to reduce FPGA implementation time. To do so,
it answered two questions: 1) Can the use of hard macros
significantly reduce FPGA implementation time? (answer:
yes), and 2) If so, by how much? (answer: about 3×). Two
general conclusions can be drawn from the results of the
two experiments. First, inserting hard cores into the standard
Xilinx flow increases implementation time rather than reducing
it. Though counter intuitive, this result is apparently to be
expected, based upon information available from the Xilinx
knowledge base [10]. Second, significant reductions in FPGA
implementation time are possible. The second experiment
indicates that it may be possible to reduce implementation
time by up to 3.1×. A 3× reduction in FPGA implementation
time means that an engineer can complete 6 debug cycles
per day instead of two, for example. Further, this second
experiment demonstrated it should be possible to augment
the Xilinx flow with a hard-macro-aware placer to achieve
these reductions in implementation time. It is not necessary to
develop a completely new tool chain.

REFERENCES

[1] P. K. Chan and M. D. F. Schlag, “New Parallelization And Convergence
Results For NC: A Negotiation-Based FPGA Router,” in FPGA ’00:
Proceedings of the 2000 ACM/SIGDA eighth international symposium
on Field programmable gate arrays. New York, NY, USA: ACM, 2000,
pp. 165–174.

[2] Y. Xu and M. Khalid, “QPF: Efficient Quadratic Placement For FP-
GAs,” in Proceedings of the IEEE International Conference on Field-
Programmable Logic and Applications. IEEE, Los Alamitos, CA, 2005.

[3] V. Betz and J. Rose, “VPR: A New Packing, Placement And Routing
Tool For FPGA Research,” in Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications. Springer-
Verlag London, UK, 1997, pp. 213–222.

[4] C. Mulpuri and S. Hauck, “Runtime And Quality Tradeoffs In FPGA
Placement And Routing,” in Proceedings of the 2001 ACM/SIGDA ninth
international symposium on Field programmable gate arrays. ACM
New York, NY, USA, 2001, pp. 29–36.

[5] R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 7, no. 2, pp. 284–305, 2002.

[6] Y. Sankar and J. Rose, “Trading Quality For Compile Time: Ultra-Fast
Placement For FPGAs,” in Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays. ACM
New York, NY, USA, 1999, pp. 157–166.

[7] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability-Driven Router
For FPGAs,” in FPGA ’98: Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays. New
York, NY, USA: ACM, 1998, pp. 140–149.

[8] E. L. Horta and J. W. Lockwood, “Automated Method to Generate
Bitstream Intellectual Property Cores for Virtex FPGAs,” in Proc. Field
Programmable Logic.2004, 2004.

[9] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A Fast
Emulation-Based NoC Prototyping Framework,” in RECONFIG ’08:
Proceedings of the 2008 International Conference on Reconfigurable
Computing and FPGAs. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 211–216.

[10] “AR #10901 - 6.1i FPGA Editor - How do I create a hard macro?”
http://www.xilinx.com/support/answers/10901.htm.

[11] “Using Three-State Enable Registers in 4000XLA/XV, and Spartan-XL
FPGAs (XAPP123 v2.0),” Xilinx Inc., Tech. Rep., January 2002.

[12] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker, and
W. Stechele, “An XDL-based Busmacro Generator for Customizable
Communication Interfaces for Dynamically and Partially Reconfigurable
Systems,” in Workshop on Reconfigurable Computing Education at
ISVLSI 2007, Porto Alegre, Brazil, May 2007.


