
A FPGA-Pipelined Approach for Accelerated

Discrete-Event Simulation of HPC Systems

Carlo Pascoe, Sai P. Chenna, Greg Stitt, Herman Lam
PSAAPII Center for Compressible Multiphase Turbulence (CCMT)

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of ECE, University of Florida, Gainesville FL 32608, USA

{pascoe, chenna, gstitt, hlam}@hcs.ufl.edu

EXTENDED ABSTRACT

In recent decades, HPC advancement has relied upon

incremental improvements in commodity off the shelf components

combined with large-scale integration. Looking forward, many

practical challenges (e.g., power and memory cost, reliability) have

necessitated a fundamentally different approach to HPC

architectures and application development. Achieving exascale will

require co-design, where application developers work closely with

domain scientists and system architects to iteratively perform

design-space exploration (DSE) to optimize algorithms on proposed

systems [1]. Modeling and simulation of application behavior on

target architectures is a key tool used in the co-design process.

Recent trends in HPC system modeling and simulation suggest

discrete-event simulation (DES) coupled with a multiscale approach

to the modeling of the system and application behaviors may

provide a good balance between model speed and accuracy [2, 4].

Although a multiscale approach enables faster simulation than

traditional cycle-accurate approaches, exascale simulation with

existing tools could take minutes, hours, or even days to complete a

single simulation. These lengthy simulations place very practical

limits on DSE and Uncertainty Quantification (UQ) efforts that

often require thousands, or even millions of independent

simulations. To address this issue, we propose FPGA-pipelined

DES, which focuses not necessarily on improved performance for a

single simulation, but instead on increased simulation throughput.

By focusing on throughput, we unlock the potential for huge

performance gains when the problem under study calls for numerous

independent simulations (e.g., DSE, Monte Carlo simulation).

In our approach, we designed a custom compiler to convert the

MPI parallel application and architecture specification used as input

to existing simulation tools (Figure 1(a)) to a data-flow graph (DFG)

representation (Figure 1(b)). Graph vertices represent each unique

discrete event (e.g., matrix multiply, MPI send, barrier) and edges

their input/output dependencies. The compiler utilizes several graph

optimization techniques to manipulate the DFG before ultimately

mapping it to an FPGA pipeline (Figure 1(c)). Assuming sufficient

resources, the compiler simply maps each vertex operation of the

DFG to independent FPGA resources. By adding pipeline registers

between events with dependencies in the DFG, a single simulation

has a latency equivalent to the DFG’s critical path. More

importantly, successive simulations start/complete once every cycle.

However, if required resources exceed a single FPGA (a near

certainty for exascale simulation) some degree of resource sharing

(a) (b)

(c)

Figure 1. Example translation from (a) MPI-like simulation specification to (b) example data-flow graph and resulting (c) FPGA pipeline

and/or circuit partitioning across multiple FPGAs is required. There

exist many approaches to this problem (the focus of current and

future research) and the challenge becomes how to apply them to

automatically generate Pareto-optimal circuits for any simulation.

We have developed a resource-sharing strategy that attempts to

“collapse” the essentially 2D DFG (threads by events per thread)

into a 1D pipe with two major scaling advantages: (1) resources

scale sublinearly with the number of threads (with a factor of

“threads” cost in simulation throughput), and (2) pipelines scale as a

single, unidirectional pipe that can be partitioned predictably across

any number of connected FPGAs with only minimal overhead.

Table 1 presents performance data for the two approaches while

highlighting the advantages and disadvantages of each. The no-

sharing approach clearly has superior performance in terms of

simulation throughput and latency, but consumes far more resources

and is ultimately far less scalable. Comparing lines 1-9 with lines

10-16 & 17-23, resources scale linearly with timesteps (TS) for both

approaches, but the sharing approach allows for many more TS due

to its much lower base utilization. Additionally, the sharing

approach's resource utilization scales sublinearly with the number of

threads (1, 10, & 17) allowing for simulations far larger than

previously possible with the no-sharing approach on a single FPGA

(e.g., simulated configurations up to 2,147,483,648 ranks). Although

the sharing approach appears to suffer a significant drop in

performance when considering simulation throughput (inverse

proportionality to ranks), if we instead consider event throughput we

see direct proportionality to logic utilization (LU%) almost

independent of the number of ranks; simulation throughput

decreases as the amount of work per simulation increases (increased

events per simulation as number of ranks increase), but the amount

of work completed each clock cycle remains constant and depends

upon how much event hardware is instantiated. This ultimately

means that although simulation throughput will continue to decrease

with increased ranks, event throughput will remain relatively

constant dependent on LU.

Overall, the proposed approach provides simulation/event

throughput that is many orders-of-magnitude faster than the BE-SST

software simulator [3] (speedup column shows at least 6 orders),

however, this gain in throughput comes at a cost. One notable

limitation of the FPGA-pipelined approach is a sacrifice in analysis

capabilities largely due to limited I/O bandwidth (e.g., BE-SST can

log all intermediate event data for postmortem analysis while the

pipelined approach is limited to a handful of “monitored” events that

can be logged without causing pipeline stalls). We also note that there

are several potential application behaviors that the FPGA may not be

able to efficiently handle at the same level of granularity as software

(e.g., dynamically modifying control flow based on event timing).

One possible solution is to model the application at a higher level of

abstraction such that the behaviors are no longer present. For our

envisioned use case, these limitations are not prohibitive because a

designer can use our approach to rapidly prune a huge design space

into a small set of promising candidates that can then be explored in

more depth using existing techniques.

REFERENCES
[1] R.F. Barrett et al., “On the role of co-design in high performance computing.”

Transition of HPC Towards Exascale Computing, Nov. 2013, pp 141–155.

[2] N. Kumar et al., “Behavioral Emulation for Scalable Design-Space

Exploration of Algorithms and Architectures.” E-MuCoCoS16.

[3] A. Ramaswamy et al., “Scalable Behavioral Emulation of Extreme-Scale

Systems Using Structural Simulation Toolkit.” (in preparation).

[4] A.F. Rodrigues et al., “The structural simulation toolkit.” ACM

SIGMETRICS Performance Evaluation Review 38(4) 2011, pp 37–42.

Table 1. Performance of sharing (right) & no-sharing (left) pipelines for CMT-Bone-BE* with varied MPI ranks and

simulation timesteps (TS) on a single Stratix V S5GSMD8K1F40C2. Performance based on average circuit speed of 335 MHz

for sharing & 300 MHz for no-sharing pipelines. BE-SST [3] run on single Intel i7 core at 2.6 GHz.

Ranks TS

Num. of

Events
% LU

Latency

(cycles)

Hardware

MSPS†

Hardware

GEPS‡

BE-SST

KEPS‡

Hardware

Speedup

1. 32 1 1,344 15 / 2 64 / 278 300 / 10.5 403 / 14.1 4.4 92x106 / 3x106

2. 32 2 2,688 31 / 3 118 / 512 300 / 10.5 806 / 28.2 7.8 103x106 / 4x106

3. 32 3 4,032 46 / 4 172 / 746 300 / 10.5 1,210 / 42.3 10.6 114x106 / 4x106

4. 32 4 5,376 61 / 6 226 / 980 300 / 10.5 1,613 / 56.4 12.9 125x106 / 4x106

5. 32 5 6,720 76 / 7 280 / 1,214 300 / 10.5 2,016 / 70.6 14.8 136x106 / 5x106

6. 32 6 8,064 92 / 9 334 / 1,488 300 / 10.5 2,419 / 84.7 16.5 147x106 / 5x106

7. 32 8 10,752 – / 12 – / 1,916 – / 10.5 – / 113 19.1 – / 6x106

8. 32 16 21,504 – / 24 – / 3,788 – / 10.5 – / 226 24.2 – / 9x106

9. 32 32 43,008 – / 44 – / 7,532 – / 10.5 – / 452 28.9 – / 16x106

10. 64 1 2,880 32 / 2 65 / 394 300 / 5.23 864 / 15.1 7.7 112x106 / 2x106

11. 64 2 5,760 65 / 4 119 / 712 300 / 5.23 1,728 / 30.1 12.6 137x106 / 2x106

12. 64 3 8,640 99 / 5 173 / 1,030 300 / 5.23 2,592 / 45.2 16.2 160x106 / 3x106

13. 64 4 11,520 – / 7 – / 1,348 – / 5.23 – / 60.2 17.9 – / 3x106

14. 64 8 23,040 – / 14 – / 2,620 – / 5.23 – / 121 23.2 – / 5x106

15. 64 16 46,080 – / 29 – / 5,164 – / 5.23 – / 241 26.9 – / 9x106

16. 64 32 92,160 – / 46 – / 10,252 – / 5.23 – / 482 29.1 – / 17x106

17. 128 1 5,952 66 / 2 66 / 458 300 / 2.62 1,786 / 15.6 10.8 165x106 / 1x106

18. 128 2 11,904 – / 4 – / 776 – / 2.62 – / 31.2 14.9 – / 2x106

19. 128 3 17,856 – / 5 – / 1,094 – / 2.62 – / 46.8 17.1 – / 3x106

20. 128 4 23,808 – / 7 – / 1,412 – / 2.62 – / 62.4 18.4 – / 3x106

21. 128 8 47,616 – / 15 – / 2,684 – / 2.62 – / 125 20.8 – / 6x106

22. 128 16 95,232 – / 30 – / 5,228 – / 2.62 – / 250 22.3 – / 11x106

23. 128 32 190,464 – / 47 – / 10,316 – / 2.62 – / 499 22.8 – / 22x106

*proxy app for CMT-Nek code under development at Florida’s PSAAPII CCMT, †Mega-Simulations-Per-Second,
‡Giga/Kila-Events-Per-Second, ‘–’ indicates configuration unable to fit on a single FPGA

