
Multiparadigm Computing for
Space-Based Synthetic Aperture Radar

Adam Jacobs∗, Grzegorz Cieslewski∗, Casey Reardon†, Alan D. George∗†
∗High-performance Computing and Simulation (HCS) Research Laboratory
†NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, University of Florida

{jacobs, cieslewski, reardon, george}@hcs.ufl.edu

Abstract—Projected computational requirements for future
space missions are outpacing technologies and trends in
conventional embedded microprocessors. In order to meet the
necessary levels of performance, new computing technologies are
of increasing interest for space systems, such as reconfigurable
devices and vector processing extensions. These new technologies
can also be used in tandem with conventional general-
purpose processors in the form of multiparadigm computing.
By using FPGA resources and AltiVec extensions, as well
as MPI extensions for multiprocessor support, we explore
possible hardware/software designs for a synthetic aperture radar
application. Design of key components of the SAR application
including range compression and azimuth compression will
be discussed, and hardware/software performance tradeoffs
analyzed. The performance of these key components will
be measured individually, as well as in the context of the
entire application. Fault-tolerant versions of range and azimuth
compression algorithms are proposed and their performance
overhead is evaluated. Our analysis compares several possible
multiparadigm systems, achieving up to 18× speedup while also
adding fault tolerance to a pre-existing SAR application.

I. INTRODUCTION

As space-based remote sensor technologies increase in
fidelity, the amount of data being collected by orbiting
satellites will continue to outpace the ability to transmit that
data down to ground stations. This downlink bottleneck, which
is caused by bandwidth limitations and high latency, can be
alleviated by allowing additional computational processing to
be performed by satellites or other spacecraft in order to reduce
their data transmission requirements. Even for applications
that do not require a large downlink channel, improved
computational performance could enable more complex and
autonomous capabilities. Additionally, achieving real-time
deadlines may also require improved processing performance.
The required performance for these applications cannot be
reached using current and near-future radiation-hardened
microprocessors. Instead, higher performance commercial-off-
the-shelf (COTS) devices, along with fault-tolerant computing
techniques, may be used to achieve mission requirements.

Space environments have several additional requirements
that are not always high priorities for terrestrial applications.
The high-radiation environment usually prohibits the use
of COTS microprocessors and FPGAs. Instead, radiation-
hardened devices, which are resistant to Single-Event Upsets
(SEUs), are used to ensure reliability and correctness. The

downside of using rad-hard devices is lower operating
frequencies, larger die sizes, higher power consumption, and
higher costs. In order to get the performance and cost
benefits of COTS components while maintaining the reliability
of rad-hard parts, systems such as the NASA Dependable
Multiprocessor may be used.

The NASA Dependable Multiprocessor (DM) project
aims to achieve reliable computation with the use of
COTS technologies in order to provide a small, low-power
supercomputer for space [1]. The DM system uses a cluster
of high-performance COTS PowerPC CPUs connected via
Gigabit Ethernet to obtain high-performance data processing,
while employing a reliable software middleware to handle
SEUs when they occur. One of the goals of the DM
system is to provide a familiar software interface for
developers of scientific applications through the use of
standard programming tools such as C and Message Passing
Interface (MPI) running on Linux. Fault tolerance features,
such as checkpointing and replication, can be added by using
API calls within a program. Additional performance can
be achieved by using the on-chip AltiVec vector processing
engine and through external Field-Programmable Gate Array
(FPGA) co-processors.

One potential application that could benefit from increased
processing capabilities is Synthetic Aperture Radar (SAR).
Space-based SAR applications process large amounts of raw
radar data in order to create high-resolution topographical
images of the Earth’s surface. The size of SAR input datasets
can be on the order of several gigabytes, while the output can
be significantly smaller, depending on the application’s goals.
These algorithms are very computationally intensive, requiring
both large amounts of processing and memory bandwidth.
In this paper we explore several options for exploiting the
parallelism of an example SAR application on a system
similar to the DM. Parallelism at several different scales
will be exploited using a variety of tools and technologies.
The AltiVec engine can take advantage of low-level data
parallelism, high-level data parallelism can be exploited with
multiple processing nodes using MPI and FPGAs can be
employed to process data showing intermediate levels of
parallelism.

The remaining sections of this paper are organized as
follows. Section 2 gives an overview of the SAR algorithm and

Fig. 1. Synthetic Aperture Radar Description

fault tolerance techniques that will be used in the following
analysis. Section 3 examines the parallel partitioning strategies
that will be examined on the target system. Section 4 discusses
the design of components that are to be used on an FPGA
for application speedup. Section 5 explores fault tolerance
techniques that can be used to ensure data integrity for the
SAR application. Section 6 presents results and analysis from
experiments on the target platform as well as simulative results
of other possible architectures. Finally, Section 7 presents
conclusions and provides directions for future research.

II. BACKGROUND

A. Synthetic Aperture Radar

SAR works by emitting high-frequency electromagnetic
pulses and receiving the echoes as they are reflected by targets
within a given scene. The basic principle is shown in Figure
1. Raw sensor data is interpreted as a two-dimensional matrix.
Data along the first dimension corresponds to the range,
which is the distance to the scatterer. The second dimension
corresponds to the azimuth, which is the location of the
scatterer along the trajectory of the SAR platform. The purpose
of SAR processing is to convert the radar returns into an image
of the scene being viewed. One common SAR processing
algorithm is known as Range-Doppler Processing (RDP) [2].
The processing of data in this algorithm can be viewed as a
2D convolution and implemented with a linear filter. However,
this approach is computationally inefficient. Instead, since the
range and azimuth time scales are nearly orthogonal, the range
and azimuth directions can be independently computed while
processing in the frequency domain. The core steps of the
SAR algorithm used in this paper will be discussed in the
next section.

B. Fault-Tolerant Computing

For space applications, designing for reliability and fault
tolerance are major requirements. Missions must function
correctly in the presence of single-event effects without any
human intervention. In order to ensure data integrity at a

system level, designers employ several methodologies such as
fault isolation and containment. A reliable system such as the
DM ensures that system components are working correctly,
and if not, takes corrective action. While these high-level
methodologies will prevent total system failure, silent data
corruption can still make computed results meaningless. A
description of every fault mitigation technique is beyond the
scope of this discussion, but we will review three techniques
that closely relate to this work. The first technique, Algorithm-
Based Fault Tolerance (ABFT), is applicable to many scientific
applications whose computation consists of linear algebra
operations. The other two techniques are important for FPGA-
based computing, Triple Modular Redundancy (TMR) and
scrubbing.

1) Algorithm-Based Fault Tolerance: ABFT, introduced by
Huang and Abraham [3], makes use of properties of linear
algebra kernels to achieve fault detection and correction.
Each matrix of a linear algebra operation is encoded by
adding redundant rows and/or columns filled with weighted
checksums that will be preserved throughout the mathematical
operation. Errors in the calculation can be detected by
verifying the resulting checksums and, if a mismatch is
detected, an appropriate recovery technique can be employed.
Recovery may consist of correcting an individual, incorrectly
computed value, recomputing an entire block of computation,
or notifying a higher-level system that an error has been
detected.

A version of fault-tolerant RDP employing ABFT has been
proposed in [4] but it uses a simplified model for azimuth
compression in which the filter applied remains constant. Such
simplification allows the same fault-tolerant technique to be
applied in range and azimuth compression but it reduces
the quality of the processed image. Fang, Le and Taft [5]
also investigated the RDP on an FPGA-based system and
employed device-level TMR for fault tolerance via FPGAs.
While this solution may be acceptable in some situations, an
ABFT approach would significantly reduce the complexity and
increase the efficiency of the system.

2) FPGA Fault Tolerance Techniques: The most significant
fault-tolerance issue for COTS FPGAs is the use of an SRAM-
based configuration memory. When a single-event upset (SEU)
affects the configuration memory, it is possible that the
functionality of a given FPGA design will change (through
altered internal lookup tables or routing resources). Such
a fault is persistent, and additional faults can accumulate
until the device is reconfigured. While many radiation-
tolerant FPGAs using antifuse or flash-based configuration
memories do not experience these faults, they suffer limited
reconfiguration abilities and are usually much smaller than
their SRAM-based counterparts. In addition to configuration
memory upsets, most COTS FPGAs are also susceptible to
transient logic errors that can occur in any non-radiation-
hardened logic device.

There are two widely-accepted methods for protecting
against SEUs in FPGAs: triple modular redundancy (TMR)
and scrubbing. With TMR, internal design components are

triplicated and their outputs are periodically voted upon.
For Xilinx FPGAs, the Xilinx TMRTool can help designers
implement a TMR version of their already existing design [6].
TMR will mask any error in one of the three replicas, as
well as any transient faults that occur. The drawback to this
approach is the increased resource utilization (> 3×) needed
for replication and voting. Additionally, multiple errors can
and will accumulate in the configuration memory if it is not
periodically refreshed.

The other fault-tolerant technique, scrubbing, periodically
reconfigures the FPGA device with a valid copy of its
configuration to ensure correctness. The verification copy
of the bitfile must be stored in a radiation-hardened device
to ensure that it will not become corrupted. The scrub
rate (frequency of reconfiguration) can be varied based on
performance and environmental factors. For devices that
support partial reconfiguration, the current configuration
memory can be periodically compared to a known good value,
and only corrupted portions of the configuration memory need
to be updated. TMR is usually augmented with scrubbing to
eliminate the collection of configuration errors.

III. APPLICATION DESCRIPTION

The SAR application featured in this paper is a range-
doppler processing algorithm that processes raw radar data
from an ERS-2 satellite [7]. Both sequential and parallel
versions of the code exist. In the sequential case, the initial
data is split into “patches” that will fit into a system’s
main memory and avoid disk-based swap files. Each patch is
processed independently, creating a portion of the final output
image. For each patch, the following procedure is followed:

1) Preprocessing
2) Range compression for each range
3) Transpose data
4) Azimuth compression for each azimuth
5) Postprocessing

Preprocessing performs basic signal conditioning operations
such as removing DC offset and accounting for sensor bias.
Range compression uses a constant filter to perform pulse
compression. The transpose orients the data in memory to
allow for better data locality for the subsequent processing
stage. Azimuth compression is similar to range compression,
except that a space-variant filter is used, varying for each
azimuth. Finally, postprocessing transposes the data and
performs additional computations to transform the complex
results into real data for human readable images.

Our parallel version of SAR was originally developed to
be executed on a cluster of traditional microprocessors. In
the parallel version, the data parallelism inherent between
patches is used to efficiently map the application to a clustered
architecture. Patches are distributed in a round-robin fashion
to individual worker nodes of a multi-node system and the
processed data is collected and written to disk on a single
master node. The five steps listed previously are performed
on each worker node.

Before exploring the design space for areas that can
most benefit from the parallelism provided by FPGAs, an
investigation of the application’s performance characteristics
can identify and prioritize the major computational areas of
the software. Efforts were made to optimize the software
code whenever possible. Fast Fourier Transforms (FFT) were
performed using the FFTW3 library, a widely recognized,
efficient FFT library [8]. The FFTW library makes extensive
use of the processor’s AltiVec resources to obtain its high
performance. The application was compiled using GCC 4.1.2
using -O2 and -mabi=altivec compiler optimizations.
Table II shows the percentage of execution time required by
each portion of the serial application. Preprocessing is included
in the range compression stage.

TABLE I
SAR APPLICATION PROFILE

Stage Exec. Time Exec. Percentage
Range compression 4.21 s 11.6%

Transpose 2.97 s 8.2%
Azimuth compression 23.75 s 65.6%

Postprocessing 5.28 s 14.6%

The profiling results in Table I suggest that the azimuth
compression is a prime candidate to offload to an FPGA
device since it occupies nearly 66% of the execution time
for SAR. Additionally, this stage contains many computations,
such as multiple Fast Fourier Transform (FFT) and filter
calculations, that could be accelerated using FPGAs by
exploiting their fine-grained parallelism. Even though range
compression represents less than 12% of the execution time,
it contains many similarities to azimuth compression, and
both will be explored in the next section. The transpose and
postprocessing functions represent a non-trivial portion of
execution time that does not favorably map to devices (such
as FPGAs) that cannot directly and efficiently manipulate the
system’s main memory.

IV. FPGA CORE DESIGN

The Alpha Data ADM-XRC-4 FPGA boards used for this
work each consist of a Xilinx Virtex4-SX55 FPGA along with
16MB of SRAM split into four separate banks. The board
connects to the remainder of the system through a 32-bit PCI
bus running at 66 MHz. An external PCI controller is used
to simplify communication with the host. The Xilinx Virtex4
has a very limited amount of on-chip memory (approximately
6 Mbits total) and the ADM-XRC-4’s SRAM is also limited,
especially considering the dataset size (300MB per patch) for
this SAR application. However, the SRAM memory is used as
much as possible because the number of data transfers from
the CPU to the FPGA needs to be minimized to alleviate
the bottleneck presented by the PCI bus. Transferring data
across the PCI bus is much more efficient for a few, large
segments than it is for many small segments. Intermediate
results are stored in the on-board memory, instead of being
communicated back to the host processor in order to avoid
unnecessary communication.

In this section, we will present hardware architectures for
range and azimuth compression and discuss their functionality
and amenability on the target platform.

A. Range Compression

Range compression is a process that correlates a received
radar signal with the transmitted pulse that it was generated
from. This process is accomplished with the use of a matched
filter. While there are several methods for performing this
calculation, the most efficient method requires conversion to
the frequency domain using an FFT. The resulting spectrum
is then multiplied by the filter and the result is converted back
to the spatial domain using an inverse FFT.

Depending on the actual operational scenario, the prepro-
cessing stage may contain several operations. For the current
study, preprocessing takes the input data (8-bit complex data
pairs) and removes the DC offset. Additionally, data vectors
are zero-padded to allow for the use of high-performance FFT
algorithms. For the data set used in this discussion, range
vectors are increased from 5,616 to 8,192 elements.

While the software version of SAR uses floating-point
precision for all arithmetic operations, there are a number of
limitations to using floating-point cores in an FPGA. The main
drawback of floating-point precision is the amount of logic
resources necessary for adders and multipliers. For the FPGA
design, a fixed-point FFT core, available from Xilinx [9],
was used to implement forward and inverse FFTs. The FPGA
design uses a pipeline approach where new input data can be
processed every clock cycle. Since the input data set does not
have a large dynamic range, the fixed-precision design will
produce accurate results.

Figure 2 shows an architectural diagram of the range
compression core. The initial 8192-point FFT uses 8-bit
complex input data. The FFT outputs are then multiplied by
filter coefficients and scaled to 16-bit fixed-precision numbers.
The inverse transform uses 16-bit inputs and produces 16-bit
outputs, which are then converted to single-precision floating-
point format.

Fig. 2. Range Compression Processing Flow

As data is processed, the amount of storage required
grows. The amount of data that can be processed between
communications with the host processor is limited by the
amount of storage available to the FPGA. For this design, the
output will be stored in one 4MB SRAM bank present on the
FPGA board. This method allows us to process 64 ranges at a
time before communicating results back to the host processor.

B. Azimuth Compression

The azimuth compression computation in the SAR ap-
plication is very similar to range compression. While the
range compression calculations use a single, constant filter
during every iteration, azimuth compression uses a much more
complex filter that varies for every azimuth. This filter must
be calculated on-the-fly due to memory limitations, since the
complete azimuth compression filter would be equal in size to
the entire image being processed.

The data being sent from the host processor is already in
floating-point format. This format is converted to 16-bit fixed-
point precision on the FPGA, which is then used as input to an
FFT. The output of the FFT is multiplied by a filter generated
on-chip. This result is then converted back to the time domain
with an IFFT. As a postprocessing step, the magnitude of the
complex result is computed and converted back to floating-
point. A graphical depiction of the processing steps is shown
in the Figure 3.

Fig. 3. Azimuth Compression Processing Flow

The range compression core uses 34% of the available slices
on the FPGA. The azimuth compression stage uses 65% of
the logic slices. The additional FPGA resources in the latter
stage are due to an additional FFT core and a filter calculation
module. The shaded boxes in Figure 3 show the additonal
components needed for azimuth compression. Both designs
were tested and can operate at 100 MHz and higher. However,
due to limitations of the on-board SRAM, the designs are
executed at 66 MHz. Worst-case power estimates from Xilinx
tools predict that the range compression core will consume 3.6
W and the azimuth compression core will consume 4.8 W.

V. FAULT TOLERANCE ADDITIONS

While TMR is a conceptually simple solution for achieving
fault tolerance, the large resource overhead makes alternative
solutions very appealing. This section will discuss changes that
can be made to range and azimuth compression to achieve
fault tolerance with minimal overhead. In addition to the
following techniques, scrubbing is also employed to protect
the FPGA configuration memory. The FPGA is reconfigured
while switching between range and azimuth compression, as
well as whenever an erroneous result is detected.

A. Range Compression

As stated earlier, range compression is filtering along the
range dimension. The filtering operation can be described as in

Equation 1, where A is the input data matrix, B is the filtered
output, FN is a Discrete Fourier Transform (DFT) matrix, ~x
is the filter vector applied to each row of the matrix, and

⊗
denotes a modified Hadamard product also called an element-
wise matrix-vector product.

B =
(
(A · FN)

⊗
~x
)
· F−1

N (1)

To verify the results of the range compression we can
augment the data input matrix with an extra row containing
the weighted sum of each column. This matrix expansion
is accomplished by multiplying A by a vector of checksum
weights. A sample weight vector is described in Equation 2.
The augmented matrix AC is commonly called the column
checksum matrix.

ET
N =

(
1 1 1 · · · 1

)
(2)

AC =
(

A
ET

N ·A

)
(3)

Since the operations used in the filtering step are all linear, the
resulting matrix BC will contain checksums that are preserved
through the operation as shown in Equation 4.

BC =
(((

A
ET

N ·A

)
· FN

)⊗
~x

)
· F−1

N (4)

=
(

((A · FN)
⊗

~x) · F−1
N

ET
N · ((A · FN)

⊗
~x) · F−1

N

)
(5)

This method requires groups of FFTs to be performed together
in order to have performance benefits versus traditional
TMR techniques. The addition of this fault-tolerant range
compression algorithm does not require modification to the
FPGA core. The only differences are that the CPU must
compute the checksum row and verify it while the filtering
is being completed on the FPGA. The AltiVec resources of
the PowerPC can be employed to improve performance of
the checksum process by computing four elements in parallel
every clock cycle.

B. Azimuth Compression

Unfortunately, the fault-tolerant algorithm designed for the
range compression calculation cannot be applied to azimuth
compression due to non-constant filter ~x. Instead, each
individual FFT (or IFFT) can be protected using an alternative
approach called concurrent error detection (CED). The filter
generation and multiplication between the FFT and IFFT can
be protected using a self-checking pair (SCP) approach. Two
independent filter generators run concurrently and an error can
be detected if the results do not agree. Figure 4 illustrates the
concept. Although not illustrated, the fixed-point and floating-
point conversion functions can be protected using an SCP or
TMR approach.

The fault-tolerant 1D-FFT has been thoroughly studied [10],
[11], [4], [12]. CED, an efficient and reliable scheme using an
ABFT-like method, was first described by Wang and Jha [4].
The general idea behind the CED scheme is to pre-compute

Fig. 4. Fault-Tolerant Azimuth Compression

encoding ve and decoding vd row vectors that will make the
following equations hold:

~ve · ~xT = ~vd · ~XT (6)

~X = ~x · FN (7)

where FN denotes the DFT matrix. Such an approach can
achieve a low overhead and few false-positives, but the general
case requires the computation of new coding vector pairs for
each size of DFT. Since range and azimuth compression work
with constant-sized vectors, the encoding and decoding vectors
are constant and only need to be calculated once at application
run-time.

VI. EXPERIMENTAL RESULTS & ANALYSIS

The experimental testbed used for this application consists
of a 4-node cluster of AltiVec-equipped 1.42GHz G4 PowerPC
processors with 1GB of SDRAM each. Each node contains
an ADM-XRC-4 FPGA board connected by a 32-bit PCI bus
at 66 MHz, providing 264 MB/s of ideal throughput. This
system is a close approximation to the data nodes for the first
DM flight system, but with a faster processor. The PCI bus is
known to be a limiting factor for performance due to the low-
bandwidth connection to the host processor’s main memory, so
we additionally examine the performance of systems without
these bottlenecks through the use of simulation.

The simulative performance results are produced using a
modeling and simulation framework designed for analysis
of FPGA-based systems and applications, developed at the
University of Florida site of the NSF CHREC Center.
The simulation framework employs discrete-event models to
represent the platform, which are stimulated by application
scripts used to characterize the behavior of the application
under study. The scripts abstract the application into a
sequence of events, supporting the timely simulation of
large-scale high-performance and reconfigurable systems. The
simulation models are calibrated based on experimental data
gained from our experimental testbed, and then extended to
model the enhanced systems under consideration [13]. Table II
outlines the important features of the systems that will be
examined in this section.

The experimental testbed (System 1) uses a faster and more
power-consuming processor than the one that will likely be
used on the initial DM flight system. Using simulation, System
2 models an architecture that is similar to the hardware of a
projected initial flight system configuration, reducing the clock
speed of the CPU to 800 MHz. In addition to performance

TABLE II
SYSTEMS UNDER TEST

System Description System Type
CPU
Speed
(GHz)

CPU-FPGA
Interconnect

1 Experimental Testbed Experimental 1.42 32-bit PCI

2 Flight System Simulative 0.8 32-bit PCI

3 Testbed with
Improved PCI

Simulative 1.42 64-bit PCI

4 Testbed with
HyperTransport

Simulative 1.42 1.6 GB/s
HyperTransport

results, we also consider the power consumption of the flight
system model, since space systems have a particularly strict
power envelope.

One simple improvement that may be able to increase
performance is upgrading the width of the PCI bus from 32-
bit to 64-bit, and therefore increasing the ideal bandwidth to
the FPGA to 528 MB/s. System 3 examines the effect on
performance caused by changing PCI bandwidth.

System 4 further improves bandwidth from the host CPU
to the FPGA by using 1.6 GB/s HyperTransport as the
connection. Products from companies such as DRC and
XtremeData Inc. allow an FPGA to reside directly in a
processor socket with a high-bandwidth connection to the host
processor and main memory. A single-board computer (SBC)
with two processor sockets would make an ideal platform to
use with this type of FPGA architecture. System 4 simulates
how this SAR application will perform with the improved
bandwidth that such a solution would provide.

A. Single-Node Performance Results

In order to assess the performance of the FPGA-enabled
versions of the SAR application, the results of each version are
compared to the original microprocessor-only baseline running
on the experimental testbed. Efforts were made to optimize
the software code whenever possible, as in Section 3. The
AltiVec-enabled FFTW library was used computing FFTs.
For the FPGA-enabled application, the ABFT error-detection
techniques discussed in the previous section are used, and their
overhead is included in the following performance results.

Fig. 5. Range and Azimuth Compression Speedup

Figure 5 illustrates the speedup attained on each test system
using FPGAs versus using only the CPU for processing.
For each of the systems in this study, the FPGA-assisted
version was unable to provide an improvement in performance
over the CPU baseline for range compression. This result
was largely due to the fact that the optimized FFT libraries
for the PowerPC executed in less time than that required
to transfer the necessary data across the PCI bus. The
azimuth compression core, in contrast, is capable of producing
speedups of 3× and higher due to the large amount of
computation that is performed in the filter calculation process.
With the 1.6 GB/s HyperTransport connection, the FPGA
version of azimuth compression can attain 7× speedup while
running at only 66 MHz. The results suggest that the I/O
bottleneck to the FPGA is very important for these kernels,
as increases in performance are approximately proportional to
increases in the I/O bandwidth.

TABLE III
FLIGHT SYSTEM POWER CHARACTERISTICS

SAR Core CPU Power FPGA Power Speedup Perf./Watt
Range 10 W 3.6 W 0.6× 1.7×

Azimuth 10 W 4.8 W 5.6× 11.7×

TABLE IV
FULL SAR APPLICATION SPEEDUP

System CPU Baseline Execution Time Speedup
1 37.56 s 20.66 s 1.8
2 59.96 s 30.56 s 2.0
3 37.56 s 18.22 s 2.1
4 37.56 s 16.31 s 2.3

For the initial flight system configuration, the maximum
power consumption of the 800 MHz processor is 10 W. By
comparison, the FPGA designs use a maximum of 3.6 W
and 4.8 W for the range and azimuth compression cores,
respectively. The performance per Watt metric, normalized to
the CPU-only baseline, is shown in Table III. Although the
FPGA-enabled range compression does not achieve speedup
over the CPU, the normalized performance per Watt of the
FPGA is almost twice the CPU-only value. For azimuth
compression, the performance speedup is accompanied by
power savings, leading to high performance per Watt.

The performance for the entire application is shown in
Table IV. These results represent the combination of speedup
from azimuth compression and the time spent solely using
the CPU for the remaining operations. The FPGA design
for range compression was not used for this case, since the
CPU outperforms the FPGA during range compression on all
four systems. Additionally, a 600 millisecond one-time FPGA
configuration delay before azimuth compression was included
for completeness.

B. Multi-Node Performance Results

In the multi-node SAR case, each node works on an
individual patch, with a full SAR image composed of several

Fig. 6. Multi-Node SAR Speedup

independent patches. The “patched” parallel approach was
chosen due to the independent nature of each processing patch.
This approach can generate high overall throughput, although
the latency of computing any single patch remains high. The
parallel program was written using MPI for communication
between nodes, and nodes were connected together using
Gigabit Ethernet. FPGAs were reconfigured before each new
patch in order to scrub the configuration memory. Due to the
available FPGA hardware, experimental testing was conducted
for system sizes up to 4 nodes. Extrapolation to larger system
sizes, as well as the representation of additional systems
beyond the experimental testbed, were accomplished using
simulation. Figure 6 shows the execution times of our parallel
SAR program processing a 16-patch image.

As seen in Figure 6, the 4-node experimental testbed
with FPGAs is able to achieve a speedup of 6× over
the single CPU-only baseline. The 16-node high-bandwidth
HyperTransport model shows the best absolute performance,
attaining 16.5× speedup. Meanwhile, the Flight System model
is predicted to achieve 18× speedup with 16 nodes due to a
slower CPU baseline and better parallel scalability.

The “patched” parallel approach exhibits good parallel
efficiency (greater than 85%) up to 4 nodes. However,
scalability beyond 8 nodes is very poor. At 16 nodes, the
Gigabit Ethernet interconnect does not allow the master
node to pass data to every node before the processing is
complete, leading to stalled processing nodes. The incremental
improvement from 8 nodes to 16 nodes is only 25%. For
systems with more than 8 worker nodes, the performance
improvement from FPGA acceleration is partially negated by
the poor network performance.

VII. CONCLUSIONS

The use of non-traditional processing resources such as
FPGAs or AltiVec engines is an effective method for
increasing performance in systems where computational power
is the largest concern. Using a few simple profiling and
estimation techniques on an original sequential program,
candidate functions for acceleration are easily determined.
The azimuth compression calculation, accelerated using an
FPGA co-processor on an experimental testbed, was able to

achieve a 3× speedup. Simulation was used to overcome
technological restrictions in our testbed system and predict
the performance of systems with better FPGA interconnect
technologies. These systems achieved a projected speedup
of 7× when increasing the current platform’s bandwidth
capabilities. Additional performance gains were possible with
multiple nodes communicating using MPI, achieving up to a
18× speedup over a single AltiVec-enabled node.

Future work may explore architectures that support high-
memory bandwidth for FPGAs, such as systems from DRC
and XtremeData, through experimentation. Since memory
bandwidth is the largest limitation from fully realizing the
capabilities of FPGAs in a multi-paradigm system, the unique
architecture may be useful for many applications. Additionally,
we plan to continue exploring the use of algorithm-based fault
tolerance for space applications.

ACKNOWLEDGEMENTS

This work was supported in part by the NMP Program
at NASA, our Dependable Multiprocessor project partners at
Honeywell Inc., and the Florida High-Technology Corridor
Council. Additionally, this work was supported by the I/UCRC
Program of the National Science Foundation under Grant No.
EEC-0642422.

REFERENCES

[1] I. Troxel, E. Grobelny, and A. George. System management services
for high-performance in-situ aerospace computing. AIAA Journal of
Aerospace Computing, Information, and Communication,
4(2):636–656, February 2007.

[2] A. Hein. Processing of SAR data: fundamentals, signal processing,
interferometry. Springer-Verlag, Berlin, 2004.

[3] J. Huang and J. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers, 33(6):518–528, June
1984.

[4] Sying-Jyan Wang and N. K. Jha. Algorithm-based fault tolerance for
FFT networks. IEEE Transactions on Computers, 43(7):849–854,
October 1994.

[5] Wai-Chi Fang, C. Le, and S. Taft. On-board fault-tolerant SAR
processor for spaceborne imaging radar systems. In Proc. of IEEE
International Symposium on Circuits and Systems (ISCAS), pages
420–423, Kobe, Japan, 2005.

[6] Xilinx TMRTool. Product Website,
http://www.xilinx.com/ise/optional prod/tmrtool.htm.

[7] C. Conger, A. Jacobs, and A. George. Application-level benchmarking
with synthetic aperture radar. In Proc. of High-Performance Embedded
Computing (HPEC) Workshop, MIT Lincoln Lab, Lexington, MA,
September 2007.

[8] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proc. of IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing, volume 3, pages 1381–1384, Seattle,
WA, May 1998.

[9] Xilinx CORE generator. Product Website,
http://www.xilinx.com/ipcenter/index.htm.

[10] Y. H. Choi and M. Malek. A fault-tolerant FFT processor. IEEE
Transactions on Computing, 37(5):617–621, May 1988.

[11] A. L. Narasimha Reddy and P. Banerjee. Algorithm-based fault
detection for signal processing applications. IEEE Transactions on
Computers, 39(10):1304–1308, October 1990.

[12] D. Tao and C. Hartmann. A novel concurrent error detection scheme
for FFT networks. IEEE Transactions on Parallel and Distributed
Systems, 4(2):198–221, February 1993.

[13] E. Grobelny, C. Reardon, A. Jacobs, and A. George. Simulation
framework for performance prediction in the engineering of RC
systems and applications. In Proc. of 2007 International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA),
Las Vegas, NV, June 2007.

