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Abstract—The PYNQ system (Python Productivity for Zynq)
is notable for combining a monolithic preconfigured bitstream,
Ubuntu Linux, Python, and Jupyter notebooks to form an
FPGA-based system that is far more accessible to non-FPGA
experts than previous systems. In this work, the monolithic pre-
configured PYNQ bitstream is replaced with a combination of a
simple base bitstream containing several partial reconfiguration
regions and a library of partial bitstreams that implement a
variety of hardware interfaces such as: GPIO, UART, Timer,
IIC, SPI, Real-Time Clock, etc., that interface to various Pmod-
based peripherals. When peripherals are plugged into a Pmod
socket at run-time, corresponding partial reconfigurations and
standard device drivers can be automatically loaded into the
Ubuntu kernel using device-tree overlays. This demand-driven,
partially-reconfigured approach is found to be advantageous
to the monolithic bitstream because: 1) it provides similar
functionality to the monolithic bitstream while consuming less
area, 2) it provides a way for users to modify or augment
hardware functionality without requiring the user to develop
a new monolithic bitstream, 3) run-time demand loading
of partial bitstreams makes the system more responsive to
changing conditions, and 4) implementation issues such as
timing-closure, etc., are simplified because the base bitstream
circuitry is smaller and less complex.
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I. INTRODUCTION

The PYNQ system (Python Productivity for Zynq) pro-

vides an accessible FPGA platform that consists of a pre-

configured bitstream containing built-in support for a wide

variety of internal and external peripherals [1]. This built-

in support for a wide variety of peripherals is one of the

main reasons that software programmers with no hardware

expertise can immediately utilize PYNQ. Unfortunately, if

you need hardware support that is not already built in to

the preconfigured bitstream, you must modify the existing

bitstream. This is a tall order that requires an experienced

hardware designer.

As a solution, this paper presents a demand-driven ap-

proach where users can construct hardware configurations

as needed, without the need for experience with the FPGA

design tools. Our basic approach (and demonstration system)

takes the IO circuitry that supports the PMOD pins and
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most of the Arduino shield pins on PYNQ, removes it from

the base bitstream, and moves it into a library of partially-

reconfigurable bitstreams (each partial bitstream currently

supports a single IO standard). At run-time, the user requests

support for some IO standard (SPI, I2C, SPI, UART, etc.) via

a simple software (Python) API. The software API partially

reconfigures the requested IO standard into PR regions now

contained in the base bitstream and loads the necessary

Linux drivers via Linux Device Tree Overlays, functionality

that is standard in recent Linux kernels.
We believe that this approach offers several advantages

over a standard monolithic PYNQ configuration. First, it

offers greater flexibility, as the user can dictate both the

type and quantity of modules they want in their system.

Second, it offers greater scalability, allowing for tens or

even hundreds of different possible modules, which would

not be possible with an “all-in-one” approach. Third, should

users venture into learning about hardware design, it offers

a modularized system where each individual module is

simple to understand and modify in isolation - much simpler

than attempting to modify the existing base bitstream, for

example. Finally, all of these benefits are provided while

also reducing the logic footprint.
In adopting a platform where the hardware can be dy-

namically reconfigured, it is essential to also consider the

impacts on the software model, particularly for a Linux

system like PYNQ, where the kernel is expecting hardware

to remain static. In the paper we consider both the hardware

and software aspects of our proposed technique, including

how the Linux Device Tree is modified at run-time in order

to allow for demand driven hardware configurations.
The major contributions of this paper include the follow-

ing:

• The hardware architecture and software organization,

particularly in the context of a Linux system, needed

to support demand-driven hardware configurations.

• A publicly released demonstration of the demand-

driven approach, implemented on PYNQ. This is avail-

able on Github at github.com/byuccl/byu-pynq.

• A comparison of the flexibility, performance, and area

requirements of the demand-driven approach against

PYNQ’s standard monolithic bitstream.

The demand-driven assembly of hardware configurations,
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(a) The base PYNQ External IO System.

                                                                                                                            

(b) Our proposed PYNQ External IO System.

Figure 1: The PYNQ External IO system. The left-hand figure shows the Xilinx-produced base system configuration for

PYNQ. This illustrates only hardware for dealing with the external IO pins on the PYNQ board (there are serveral hardware

cores to deal with other I/O (audio, video, etc.) that are not the focus of this work and are not shown here). The right-hand

figure shows our proposed hardware modifications to enable a demand driven configuration framework.

based upon partial reconfiguration is very scalable and will

have application far beyond PYNQ.

This paper is organized as follows: Section II gives

background on the PYNQ I/O system, Section III presents

our hardware architecture for supporting demand-driven con-

figurations. Section IV describes the Linux-based software

organization required to support such a system. Section V

provides an evaluation of our demonstration platform. A de-

scription of related work follows and Section VI concludes.

II. BACKGROUND

A. The PYNQ IO System

The PYNQ system runs Ubuntu Linux on the ARM A9

CPU, and includes several IP cores implemented in the

FPGA fabric to interact with both on-board and external

peripherals. In PYNQ terminology, the FPGA configuration

is referred to as an overlay; however, in this paper we use

the term configuration to prevent confusion with other types

of FPGA overlays that may not be central to this discussion.

A large portion of the resources in the base configuration

are allocated to the external IO system. Figure 1a illustrates

the base PYNQ configuration, where there are three separate

IO systems (IOP1, IOP2, and IOP3). IOP1 and IOP2 manage

the two Pmod connectors on the board, and IOP3 manages

the Arduino shield pins. Each of these systems include

several IP cores to implement different protocols on the IO

pins (SPI, IIC, etc.), with a controllable switch to control

which core has access to specific physical IO pins.

Included with each IOP system is a Microblaze soft pro-

cessor which is used to execute the Xilinx bare-metal drivers

for these I/O cores. The software executing on the Microb-

laze can communicate with the main ARM system processor

via a shared memory, although for anything beyond the

simple applications, the user is responsible for writing this

communication software. Relative to the ARM processor, the

Microblaze cores are relatively inaccessible, require the use

of the embedded Xilinx Software Development Kit (SDK),

and are more difficult to debug. While the Microblaze cores

may be beneficial for real-time applications where latency is

key, we believe the significant burden of learning the Xilinx

SDK software, writing code for two different processors, and

writing a communication program will often not be worth

the benefit.

Overall, this monolithic “all-in-one” architecture requires

a substantial number of resources; in total, the I/O systems

consume 13000 LUTs (24% of the FPGA). Despite the

high resource cost, this approach is mostly successful in

its purpose. It provides designers with access to many dif-

ferent I/O protocols without requiring any hardware design

expertise. Still, it is far from ideal. If new I/O controllers

are needed, or even if the user simply needs to modify a

compile-time configuration option, the entire hardware needs

to be modified and recompiled, requiring an understanding

of the FPGA flow. For example, in the PYNQ system, if a

designer needed to change the UART baud rate or wanted to

move the SPI controller to a different set of I/O pins, he or

she would need to compile a new hardware configuration.

Although we could add more and more I/O controllers into

the configuration to provide more functionality out-of-the-

box, it would require even more resources. This approach is

not scalable beyond a handful of I/O configurations.

In the next section we discuss our alternative architecture

that uses partial reconfiguration to load modules only when

necessary.
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I/O Controller Bus # I/O Pins Size (LUTs)

GPIO AXI4-Lite 1–32 25–249
UART (Uartlite) AXI4-Lite 2 100–119
SPI (Quad SPI) AXI4-Lite 4+ 372–412
I2C AXI4-Lite 2 314–317
Timer/PWM AXI4-Lite 4–6 96–256

Table I: Implemented and Tested Xilinx I/O Controllers.

III. RECONFIGURABLE I/O FRAMEWORK

A. The Hardware Architecture

Figure 1b illustrates our proposed architecture for lever-

aging partial reconfiguration to support user-defined config-

urations. Where the base PYNQ configuration (Figure 1a)

includes tens of I/O controllers, we instead propose the

inclusion of a handful of PR regions. Each of these regions

are identical: they contain an AXI connection to the main

processor bus (with a fixed memory address), a connection

to a set of physical I/O pins, and an interrupt output that

connects to an interrupt controller.

This architecture works very well for I/O controllers as

they tend to all fit this template. Table I lists the various

Xilinx I/O controllers available on the PYNQ system, all

of which we have tested in our modified PYNQ system.

Each of these follows the same structure of an AXI4-Lite

bus connection, an interrupt output, and a few I/O pins. In

addition, these cores are on the same order for size, requiring

25–412 LUTs. By sizing our PR partitions to each include

200 slices (800 LUTs) and 6–8 I/O pins, we can implement

any of the I/O controller modules in any PR partition.

B. Our Demonstration PYNQ Architecture

In our demonstration PYNQ system we provide 6 PR

regions, as well as modules that can be implemented in

these regions for each of the IO cores listed in Table I. The

floorplan of our design is shown in Figure 2.

The first PR region replaces the entirety of the IOP1

system for the PmodA connector. This replacement removes

the GPIO, IIC, SPI and Timer cores, and replaces them with

a single PR region. This not only reduces the area cost,

but actually provides even more flexibility than the original

system. For example, the PR region can be configured to

implement a UART core, which was not available in the

base configuration. We do the same replacement for the other

Pmod, replacing the IOP2 system with a single PR region.

For IOP3, which manages the Arduino shield interface, we

replace most of the IP cores with a set of four PR regions.

Some pins, as shown in Figure 1, have fixed interfaces (IIC,

SPI, XADC) so we leave these be. The 14 pins on the

outer connector that were controlled by the IO switch and

collection of IO cores are now managed by two PR regions.

To provide even greater flexibility to the user, the 16 pins

on the inner GPIO header that were previously only tied

to a GPIO controller are now controlled by two of the PR

Figure 2: Floorplan our demonstration system

regions, adding new flexibility to these pins. Overall this

provides much higher flexibility, at again a lower area cost.

It is now possible to, for example, implement multiple IIC,

SPI or UART controllers, move controllers between different

pins, or program the PR regions with entirely different PR

modules than the cores provided in the base configuration.

Although the base PYNQ configuration attached the

IO controllers to separate Microblaze processors, we have

elected to attach them directly to the ARM processor. In our

opinion, the benefits provided by a separate bare-metal IO

processor (fixed latency, some additional processing power),

are outweighed by the additional complexity of introducing

the SDK into the software development process, and the

need to program two different processors, plus communi-

cation software. Operating the devices within Linux does

introduce some complexity to the software organization,

especially because the kernel needs to be aware of the

dynamic reconfiguration that can take place; however, it will

be seen that this is largely a non-issue with a modern Linux

kernel (see Section IV).

Note that, even though our demonstration system attaches

the PR regions to the ARM, it would be straight forward

to instead attach them to a separate Microblaze, if desired.

For example, one could build a system with both the ARM

and a Microblaze as masters on the same bus, allowing the

user to choose which processor to run the I/O software on at

run-time. Alternatively, a larger PR region could be provided

(resources permitting) that could accommodate a Microblaze

processor and IO core.

C. The Compilation Flow

By electing to use PR, the hardware compilation flow

is naturally more complex than the standard Vivado flow;

however, the changes are actually quite minimal. The overall

PYNQ system remains a Vivado block design project that
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Figure 3: Block diagram for Timer/PWM module

can easily be manipulated by a user familiar with FPGA

hardware design. We have only modified the external IO

portion of the PYNQ design (Figure 1), the rest of the project

remains intact. The PR partitions are represented as black-

boxes in the design, and the user can perform Synthesis from
Vivado as usual. To complete the Implementation phase and

generate a bitstream we provide a single TCL script for the

user to run. This script first performs Implementation on the

static portion of the design, then iteratively implements each

PR module, generating all necessary bitstreams.

D. A Modular, Scalable I/O System

Each module that can be implemented in a PR region is

stored as its own isolated Vivado project. Figure 3 shows

the block diagram for the Timer/PWM PR module. As seen

in the image, the design contains the AXI interface pins, the

interrupt pin and the tristate I/O pins. If the user wishes

to add a new I/O module, or modify a compile-time IP

configuration, they can simply copy an existing I/O project

and make the desired changes. As long as the input/output

pins remain unchanged, the user can place any logic in

between, provided it fits within the resource constraints.

This modular design means users can introduce new I/O

configurations without having to interact with or recompile

the full system. This has several benefits that are especially

helpful for an educational/hobbyist platform: faster compile

times, a much simpler design to work with, and no risk that

recompiling a small module will break timing on the full

system design. For example, on our workstation, the full

compilation for the Timer/PWM module shown above takes

nine minutes, compared to 84 minutes for the full PYNQ

system.

Furthermore, this system would allow a board vendor to

provide nearly limitless hardware I/O configurations without

requiring the user to perform any hardware design. For

example, a vendor could distribute several different bitstream

variants of a SPI module, covering all of the common

hardware configurations. While it may be insensible to

expect a user to generate hundreds of different bitstreams,

it would be completely feasible for a vendor to do so. In

our architecture on the Zynq FPGA, these partial bistreams

with 200 slices are only 149KB each.

By leveraging reconfigurability, such a system could sup-

port a nearly limitless number of different peripherals, all

without requiring any hardware redesign by the end-user.

This would allow the end-user to actually take advantage

of the reconfigurable nature of FPGAs, and would set the

system apart from fixed hardware systems like Arduino or

Raspberry PI.

IV. SOFTWARE DEVELOPMENT FOR RECONFIG. I/O

Introducing our reconfigurable architecture doesn’t have

a big affect on the software development process. Assuming

we provide the user with a library function to reconfigure

a region with a chosen bitstream, the rest can be taken

care of by the user. When the user program reconfigures

a PR region, they are responsible for stopping the driver

for the old hardware core, and initializing the driver for the

new core. Straightforward procedures to achieve this will be

discussed in the following sections.

A. Linux Devices and Drivers

In Linux systems, the Device Tree is responsible for

enumerating the hardware devices in the system and their

properties, such as base address, IRQ number, driver name,

etc. Figure 4 provides a snippet from a device tree file; in

this case, these lines declare a few of our PR partitions.

Of particular interest is the compatible field, which lists

the kernel device driver that handles the device. On kernel

boot the device tree is loaded, and all of the device drivers

are loaded into the kernel and are notified of the hardware

devices they are responsible for. This poses a challenge for

partial reconfiguration-based systems, as traditionally the

device tree is static. How we handle PR and the Linux

Device Tree depends on whether the user elects to use kernel

or user space device drivers. Although kernel drivers are the

norm, user space drivers are still often used. User space

drivers are attractive as they offer a much easier learning

curve, simpler debugging, and a more stable API; however,

if the driver needs to make frequent system calls, the cost of

context switching may affect performance. We support both

kernel and user space drivers in our framework, and have

examples of both in our demonstration system.

B. Supporting Linux User Space Drivers

The Linux kernel contains the built-in Userspace IO (UIO)

driver [2], which hands off low-level access of a device to

user space. Any devices that use the UIO driver will be given

a unique device file (/dev/uioX). From user programs,

this file can be accessed using mmap(), providing memory-

mapped access to the device registers. To access device

interrupts, the user performs a read() on the UIO device

file, which will block until an interrupt occurs (select()
and poll() offer non-blocking alternatives).

For our reconfigurable I/O system, each partition is given

an entry in the Linux Device Tree, indicating that the UIO

driver will be used (Figure 4). The same UIO driver be used
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...
pr0: pr0@41A10000 {

compatible = "generic-uio";
reg = <0x41A10000 0x10000>;
interrupt-parent = <&xil_intc>;
interrupts = <0x0 0x00>;

};
pr1: pr1@41A20000 {

compatible = "generic-uio";
reg = <0x41A20000 0x10000>;
interrupt-parent = <&xil_intc>;
interrupts = <0x1 0x00>;

};
pr2: pr2@41A30000 {
...

Figure 4: PR partitions using the UIO driver

/{
compatible = "xlnx,zynq-7000";
fragment@0 {

target = <&amba>;
__overlay__ {

pr0@41A10000 {
compatible = "xlnx,axi-uartlite";
reg = < 0x41A10000 0x10000 >;
interrupt-parent = <&xil_intc>;
interrupts = < 0 4>;

};
};

};
};

Figure 5: Linux Device Tree Overlay

for any module configured into a PR partition; thus, the de-

vice tree can remain static throughout partial reconfiguration.

The user space drivers will need to be loaded and unloaded

on reconfiguration. User-space drivers are managed by the

user, so loading and unloading is performed by the user’s

application.

C. Supporting Linux Kernel Drivers

The use of Linux kernel drivers is a more interesting

challenge for our PR architecture. The typical Linux be-

haviour is to load the device tree once at boot time, after

which it remains unchanged. This introduces a problem since

we need device drivers (which are dictated by the device

tree), to be loaded and unloaded automatically when the

user reconfigures a PR partition.

Fortunately, over the last couple years the Linux kernel

has been modified to introduce the concept of Device
Tree Overlays, which are device tree augmentations that

can be added to, and removed from the device tree at

runtime. Figure 5 provides an example of a device tree

overlay file that indicates a UART will be added at address

0x41A10000 (PR region 0). When the overlay is loaded

into the active device tree, the kernel will be notified of

the new device, and will in turn load the Xilinx UART

driver ("xlnx,axi-uartlite"). If the user wants to

reconfigure the region to a different module, the old overlay

is first removed, notifying the kernel, and thus the kernel

driver, that the previous device has been removed.

Multiple device tree overlays can be applied and removed

independently. This allows us to gracefully reconfigure par-

titions with new hardware, loading the driver for that device,

while other partitions continue to operate concurrently.

Device tree overlay support is still fairly new in the

Linux kernel, and in the version of the kernel used by

the PYNQ 2.0 system (4.6) there is no way to add and

remove device tree overlays from user space; it is expected

that user space would not be responsible for changing the

hardware of a system. Of course for this proposed work this

is exactly what we want to do; the user application is in

control of which hardware is present in the PR partition,

and can swap it out at will. To provide this ability to user

space we developed a kernel module, accessible from user

space, that can add and remove device tree overlays. This

Reconfigurable Partition Manager can be accessed through

the /dev/rp_mgr file using IOCTL commands.

In our demonstration PYNQ system we provide device

tree overlay files for each of the possible I/O controllers

in Table I, allowing the user to use the existing Xilinx

kernel drivers if they desire. If the user wants to use

different kernel drivers, perhaps for new hardware they are

adding to the system, it is a simple process to create new

overlays. An existing overlay file (Figure 5) is copied and

the compatible string is updated to the new driver name.

D. User Programming Interface

So far in this section we have described the low-level

mechanisms for managing devices from user software. How-

ever, much of this can be abstracted from the user, and

instead a very simple API can be provided.

To demonstrate this in our system, we created a set of

Python classes that provide the user’s application with a

very simple API to reconfigure PR regions, and interact

with the implemented hardware devices. These functions are

provided as a Python package called io_pr.
At the heart of this package is the IoPr class, which

provides access to the peripherals on the PYNQ system, in-

cluding the PR regions. Contained within this class are mem-

ber objects for the six reconfigurable partitions (rp0..rp5).
These objects are instances of the PrRegion class, which

provides access to functions to reconfigure the partition, read

and write to registers in the RP’s address space, and check

for interrupts.

Using these classes, the user can write very simple pro-

grams to configure the hardware and control the devices;

Figure 6 provides an example user program. The first step

(line 7) is to instantiate the IoPR class which gives the user

access to the hardware system. Next, on line 10, the first

reconfigurable partition, RP0, is configured to implement
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1 from pynq.overlays.io_pr import IoPr
2 from pynq.overlays.io_pr.drivers.uart import Uart
3 from pynq.overlays.io_pr.drivers.gpio import GPIO
4
5 # Instantiate IoPr class to interact with overlay
6 # - Use user space drivers
7 overlay = io_pr.IoPr(driverModeKernel = False)
8
9 # Program RP0 with a UART

10 overlay.rp0.configure("uart")
11 uart = Uart(overlay.rp0)
12
13 # Sent data out over the UART
14 uart0.sendData([0xDE,0xAD,0xBE,0xEF])
15
16 # Program RP2 with GPIO
17 overlay.rp2.configure("gpio")
18 gpio = GPIO(overlay.rp2)
19
20 # Set GPIO as outputs and turn on LED0
21 gpio.setDirection(GPIO.ALL_OUTPUTS)
22 gpio.setValue(0x01)

Figure 6: Example user code for configuring PR partitions

and using user space drivers.

a UART core. Behind the scenes this will perform recon-

figuration by activating the PR decoupler, reprogramming

using the appropriate partial bitstream, and deactivating

the decoupler. If kernel drivers were being used, the ap-

propriate Linux device tree overlay would automatically

be applied by sending a command to the Reconfigurable

Partition Manager, which would in turn trigger Linux to

load the appropriate kernel driver.1 However, in this example

we are using user space drivers (driverModeKernel =
False), so this step will not occur.

Once the partition is configured, the user can allocate a

Uart object, a simple user space Uart driver we provide in

our demonstration system. The RP object is passed to the

Uart driver so that it has abstracted access to the device.

This, for example, allows the UART code to read and write

to hardware registers, or wait for interrupts, without needing

the base address or IRQ number of the partition. The rest of

Figure 6 (lines 16-22) shows configuring RP2 with a GPIO

controller, and turning on an LED. If the user were using

kernel space drivers, the RP reconfiguration would still take

place in the same way as Figure 6. However, instead of using

the Uart or GPIO user space drivers, they would interact

directly with the device file in /dev/.
Our demonstration system is publicly available on Github

(link in Introduction), complete with step-by-step tutorials

on how to modify an existing PYNQ setup to run our system.

Jupyter notebook pages are provided with demonstrations

1An infrastructure to handle the process of decoupling, partial reconfig-
uration, and applying a device tree overlay automatically from the kernel is
now available in very recent versions of the Linux Kernel. This is known as
the FPGA Manager [3], which is a joint development by Intel and Xilinx.
Unfortunately this in not available in the 4.6 Linux kernel used by PYNQ,
which necessitated providing our own user code for these steps.

System Components Base PYNQ
Config.

Our
System Diff

ARM AXI Bus 3554 4409 +855
IntC, GPIO for PR Regions - 174 +174
IOP1 Subsystem 3291 *805 -2486
IOP2 Subsystem 3295 *805 -2490
IOP3 Subsystem 6414 *4124 -2290
Rest of PYNQ design 15468 15172 -296

Total LUTs 32019 *25487 -6532

Table II: Area comparison (LUTs) of the base PYNQ

configuration with our 6 PR region system. The * values

depend on what is implemented in the PR regions; the worst-

case (all 800 LUTs per PR region used) is assumed. There

are a total of 53200 LUTs available on the XC7Z020 FPGA.

of reconfiguring regions and interacting with devices. To

demonstrate user space drivers, we created drivers in Python

to manage the AXI GPIO and UART cores. In addition,

we ported the Xilinx bare-metal IIC driver to Python, also

as a user space driver. For kernel drivers we provide a

sample demonstration of interacting with the Xilinx IIC

driver. In addition, we include a new module, a real-time

clock handler, which was not available in the base PYNQ

configuration. This allows us to plug a real-time clock board

into any GPIO pins associated with a PR partition, providing

Linux with a persistent clock.

V. EVALUATING OUR DEMONSTRATION PLATFORM

In this section we compare our proposed demand driven

configuration architecture against the base configuration

provided with PYNQ.

A. Flexibility

As discussed already in the paper, the foremost benefit of

this system is improved flexibility that retains the original

ease of use. The user has access to six PR regions that can

each implement any of the IO protocols present in the orig-

inal PYNQ configuration. Furthermore, adding additional

I/O protocols and peripherals is much more straightforward.

Additional protocols can be added by creating a new PR

module (this is much, much easier than implementing a new

base bitstream) and additional peripherals can use standard

Linux device drivers. For example, we added a real-time

clock peripheral to PYNQ simply by connecting it to a

PMOD connector, loading the existing I2C I/O module and

loading the standard Linux driver. Accessing the peripherals

directly by the ARM processor makes it much easier to use

standard drivers.

B. Area

By utilizing partial reconfiguration this huge increase in

flexibility can be provided while also saving logic resources.

Table II provides an area comparison between the two

architectures. For each of the IO systems (IOP1, IOP2, IOP3
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– see Figure 1), we remove the Microblaze processor, the IO

cores that feed into the IO switch, and the IO switch itself.

This logic is replaced with PR regions, reducing the resource

requirement by 2290–2490 LUTs per region. Attaching these

regions directly to the ARM bus, increases the bus logic by

855 LUTs, and providing an interrupt controller and GPIO

to control decoupling costs another 174 LUTs. For the full

system, the savings is 6532 LUTs, representing over a 20%

reduction in logic resources.

The PR approach provides significant area savings, while

offering greater flexibility to the user. One may note that

we elected to remove the Microblaze processors, which

contributed to a large part of the area savings. We explained

the reasoning for this choice in Section III-B; however, if a

dedicated I/O processor was essential to a user’s application,

a Microblaze could be added for roughly 1500 LUTs.

C. Performance

In general we found that our approach does not affect

the performance of the user’s application. In our testing,

it requires approximately 10-12ms to configure a single

PR region. This is done using the process explained in

Section IV-D, where a Python module interacts with the

underlying hardware and drivers to decouple the PR region

and perform the partial reconfiguration.

Another area of performance we wanted to explore was

the affect of moving our I/O controllers off of a dedicated

Microblaze bare-metal processor and onto the ARM system

processor running Linux. We anticipated this change would

introduce additional latencies into the device drivers, as a

Linux system is of course much more complex than a simple

bare metal application.

To understand how device latencies would be affected

we performed a simple experiment where we measured the

latency to handling an interrupt. We used our reconfigurable

region to attach a GPIO controller to a Microblaze running

bare-metal software on the PYNQ board, as well as to the

ARM processor running Linux. We wired an output GPIO

pin to an input GPIO pin, which would trigger an interrupt

when the input toggled. We then created a program which

would repeatedly toggle the GPIO output, and measure

the latency to the ISR beginning execution. For the Linux

platform the GPIO output was toggled in user space, and

we tested both an ISR in the kernel, or an ISR in user

space using the UIO (Section IV-B). The results of 1000

ISR invocations are shown in Table III.

The Linux kernel ISR actually has lower average latency

than the Microblaze, and even the user space ISR is not

much worse than the Microblaze. This was our primary

justification electing to use the ARM processor for our I/O

controllers. In our opinion this shows that for the PYNQ

system, attaching I/O devices directly to the ARM is prob-

ably the preferred choice, and having to deal with the extra

software complexity of programming multiple processors

Configuration Interrupt Latency
Mean Range

Microblaze Bare-metal 6.57 μs 6.57–6.57 μs
ARM A9 Linux (Userspace ISR) 9.81 μs 6.46–32.11 μs
ARM A9 Linux (Kernel ISR) 4.64 μs 3.41–16.26 μs

Table III: Interrupt Latencies

is probably not worth it, except for the strictest real-time

applications.

D. Demo Platform

As evidence of the flexibility of our architecture, we

created a physical demonstration that consists of a series

of breakout boards that plug into the GPIO pins controlled

by our PR partitions. We have a breakout board with a

battery powered real-time clock, an IIC controlled 7-segment

display, GPIO controlled LED array, and more in the works.

The magic of the system is that a user can plug a board

into any of the GPIO slots, and a Python program that is

monitoring a couple of identification pins will detect what

type of board was plugged in, automatically reconfigure the

PR partition for for the appropriate protocol (IIC, SPI, etc.),

which in turn loads the kernel driver. Then a demo program

is automatically run on the board, utilizing the standard

Linux driver. The user can add and remove boards, or swap

positions, and the demos programs will continue to run.

All of this is done with a straightforward Python program

running on the ARM, with no hardware design expertise

required.

VI. CONCLUSIONS AND FUTURE WORK

In general, in spite of an overall increase in system

complexity, the partially-reconfigured system is easy to use

and is more flexible and economical than the monolithic

bitstream used by the default PYNQ platform. It will also

scale to much larger devices such as Xilinx’s UltraScale+

MPSOC where a monolithic bitstream is likely to be un-

gainly and to many take hours to place and route. From a

hardware perspective, we find it much more convenient to

compile smaller PR circuits when adding new IO capability.

These circuits compile rapidly and generally have no impact

on timing closure. The ARM processor is powerful enough

to handle the IO directly and the system can be modified

to attach a Microblaze processor to the AXI bus along with

the ARM processor (larger PR regions could also support

demand loading of a Microblaze if desired).

This system is a small baby step toward a larger vision -

espoused by many in the FPGA community - where FPGA

resources are primarily managed by a standard OS and

controlled by programmers (see the Related Work Section).

In this vision, partial bitstreams are not limited strictly to

IO cores but also include large hardware-based accelerators

and other related computing modules.
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In the future, we plan to extend this research beyond IO to

include support for demand-loaded accelerators. In addition,

we plan to investigate demand-driven approaches for larger

systems such as the MPSOC.

VII. RELATED WORK

Related research efforts include those that 1) employ

standard or custom OS’s to manage FPGA resources, 2)

study software/hardware FPGA interfacing, and 3) use par-

tial reconfiguration for run-time instrumentation.

FUSE, for example, provides an abstraction for hardware

acceleration that is transparent to software designers and

that supports easy integration of hardware accelerators. It

provides an API for POSIX threads within embedded Linux

and has demonstrated speeds of 6.4-37X [4]. BORPH exe-

cutes hardware designs as normal UNIX processes so that

they have access to standard OS services. The hardware and

software parts of user designs communicate as processes

under BORPH’s runtime environment [5]. Hthreads uses

an operating system that supports a range of computa-

tional models and eases development with an intermediate

representation along with support for high level languages

[6]. ReconOS provides a multithreaded programming model

with OS-level thread support for reconfigurable hardware.

Hardware and software interact using semaphores, mutexes,

message queue, and other standard OS mechanisms [7].

DyRACT is a partially reconfigurable FPGA system that

can load and operate partial reconfigurations at run-time.

PR management is part of the static region and multiple

accelerators loaded by a high-level API [8]. Authors of

the Python pynqpartial package extended the pynq package

to simplify management of partial bitstreams on PYNQ

overlays designed with static regions and PR regions [9].

RAMPSoc (Runtime Adaptive Multi-Processor System on

Chip) adapts a Linux kernel to support the Message Passing

Interface (MPI) and to integrate software/hardware drivers

to provide message transfer over a reconfigurable/heteroge-

neous Network on Chip (NOC) [10].

A recent effort by Kadi et al. uses Ubuntu Linux to load,

control and communicate with a partially-reconfigurable

peripheral. Reconfiguration is performed via the Processor

Configuration Access Port (PCAP) and a generic UIO driver

added to the Linux device tree (uio pdrv) provides direct

access to the address space for the reconfigurable peripheral

[11]. In contrast, the work described in this paper uses Linux

device-tree overlays and automatically loads in multiple

device-specific drivers on demand. Finally, partial recon-

figuration and embedded Linux are used to automatically

detect the identity of a sensor that is attached to a partially

reconfigurable region; once the identify is confirmed, the

corresponding partial reconfiguration is loaded [12].
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