
Approaches for FPGA Design Assurance

ELI CAHILL, Brigham Young University, USA
BRAD HUTCHINGS, Brigham Young University, USA
JEFFREY GOEDERS, Brigham Young University, USA

Field-Programmable Gate Arrays (FPGAs) are widely used for custom hardware implementations,
including in many security-sensitive industries, such as defense, communications, transportation,
medical, and more. Compiling source hardware descriptions to FPGA bitstreams requires the use of
complex computer-aided design (CAD) tools. These tools are typically proprietary and closed-source,
and it is not possible to easily determine that the produced bitstream is equivalent to the source
design.

In this work we present various FPGA design flows that leverage pre-synthesizing or pre-
implementing parts of the design, combined with open-source synthesis tools, bitstream-to-netlist
tools, and commercial equivalence checking tools, to verify that a produced hardware design is
equivalent to the designer’s source design.

We evaluate these different design flows on several benchmark circuits, and demonstrate that
they are effective at detecting malicious modifications made to the design during compilation. We
compare our proposed design flows with baseline commercial design flows and measure the overheads
to area and runtime.

ACM Reference Format:
Eli Cahill, Brad Hutchings, and Jeffrey Goeders. 2021. Approaches for FPGA Design Assurance.
ACM Trans. Reconfig. Technol. Syst. 1, 1 (October 2021), 32 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 Introduction
Field-Programmable Gate Arrays (FPGAs) offer a “blank-slate” of programmable circuitry,
allowing designers to implement arbitrary digital circuits that have the potential to provide
speed and power improvements over commodity software processors, while providing faster
time-to-market and lower designs costs than ASICs. This enormous level of flexibility has
led to FPGAs being used in a diverse range of technology sectors, including several areas
where design integrity is key, including defense applications, biomedical devices, self-driving
vehicles, communications infrastructure, and more.

However, this great flexibility of FPGAs comes at a price: complex CAD tools are required
to map the designer-provided circuit description to a bitstream that can be used to configure
the FPGA. When used in a standard out-of-the-box configuration, these commercial CAD
tools perform many transformations and make it nearly impossible for a designer to easily

Authors’ addresses: Eli Cahill, , Brigham Young University, EB 450, Provo, UT, USA; Brad Hutchings,
brad_hutchings@byu.edu, Brigham Young University, EB 450, Provo, UT, USA; Jeffrey Goeders, jgoeders@
byu.edu, Brigham Young University, EB 450, Provo, UT, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1936-7406/2021/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

verify on their own that the produced bitstream precisely implements their original design,
without unintended data leaks, back doors, or other compromising features. However, as
we show in this paper, by combining commercial tools with recent advances in open-source
FPGA tools and equivalence checking tools, it is possible to perform design equivalence
checking. However, there remains significant limitations on synthesis optimizations, scalability
to larger designs, and portability to new FPGA families.

1.1 Motivation and Objectives
The FPGA CAD flow consists of many stages and connected tools as the design is transformed
step-by-step from a textual behavioral description, to a physical programming file. In general,
these tools are closed-source, and the produced bitstream is of propriety format, leaving
designers to trust that their designs are implemented on the FPGA accurately and without
compromising features.

While the software world offers many tools to inspect the compilation process and end-
result executable (open-source tools, dissasemblers, dynamic monitors), the compilation
tools used in the FPGA CAD process are almost exclusively close-sourced, proprietary tools.
These tools, which are typically tens of gigabytes in size and can take hours to compile
designs, are nearly black-box systems. In addition, the produced configuration bitstream is
proprietary, and the designer has no way of knowing what is actually implemented in the
circuitry specified by the bitstream. The designer is forced to completely trust that the CAD
tools implemented the design as requested. Unfortunately this leaves several vulnerabilities
in the FPGA compilation process:

∙ A malicious actor within the company (or contracted company) responsible for the
CAD tools may be able to modify the tool to silently inject back doors, kill switches,
or other hardware Trojans into the design.

∙ An unknown bug in the complex CAD tools may produce a design where certain
internal signals, such as encryption keys, or other sensitive data, are leaked and
unintentionally observable to the larger system.

∙ Targeted malware on a designer’s computer may replace portions of an otherwise
safe CAD flow with malicious tools that inject hardware Trojans into the produced
bitstream.

∙ The generated bitstream could be intercepted and modified post-compilation, without
the designer realizing it was changed after generation by the CAD tool. Again, this
could be done by compromised tools, or it could by modified on the filesystem by an
internal malicious actor, during file transfer, via network intrusion, etc.

As expected, these vulnerabilities may be of great concern for many designers using
FPGAs. For example, defense contractors may be concerned with detecting hidden kill
switches, communications companies may be unsure whether their design contains back
doors that allow a foreign state to monitor communications, producers of medical devices
may wonder whether patient confidentiality is sufficiently maintained, and designers of
self-driving cars would be concerned with any design modifications that could compromise
the safety of the passengers.

While such scenarios may seem unlikely, there have been some cases of suspected hardware
Trojans in the wild [1], [2], as well as several academic works that have demonstrated the
feasibility of inserting hardware Trojans [3]–[5]. In fact, much research goes into ensuring
that the source description of designs are Trojan free, before being synthesized into actual

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 3

Trusted Content
Creator

RTL

User

FPGA
RTL

Comparator

RTL

Bitstream

Bitstream

Fig. 1. Extracting and comparing circuit properties

hardware. It therefore makes sense to expend some effort to ensure that these designs remain
safe and secure through the compilation process.

The end-goal of this work is to develop techniques to determine equivalence between the
original HDL circuit description, and the low-level circuit produced by the closed-source
FPGA CAD tools. The overarching approach taken in this project is illustrated in Figure 1,
and consists of extracting properties and circuit details from the user-supplied design, and
comparing them against properties extracted from the final FPGA bitstream.

1.2 Challenges and Strategies
While ideally one could simply provide the original design and the bitstream to a commercial
equivalence checking tool, this is not feasible. Developing a full comparison flow, and
associated tools, capable of determining equivalence for arbitrary circuits is a monumental
task, due to several challenges:

∙ The bitstream is propriety, so cannot directly be input to commercial equivalence
checking tools. In addition, even if the bitstream can be converted to an equivalent
netlist, all signal names from the original design are lost, making equivalence checking
much more challenging.

∙ During the CAD flow, the design undergoes several transformations that make com-
parison difficult. For example, we created a simple 32-bit counter design that used the
most-significant bit to blink an LED. The FPGA CAD tools were able to optimize
away a single flip-flop, causing even this simple design to fail equivalence checking
using Cadence Conformal (an ASIC-targeted formal verification tool).

∙ Modern equivalence checking tools are limited in scalability; they cannot tackle modern
FPGA designs which can contain millions of logic gates.

Given these challenges, this work represents only the first steps towards the goal of
arbitrary FPGA design equivalence checking, and leverages some of the following concessions
to make the comparison process more manageable:

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

4 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Disabling CAD Optimizations Certain optimizations can be disabled in the CAD flow to
reduce the modifications made to the design during compilation. This includes disabling
optimizations such as retiming, or applying code pragmas to prevent certain signals
from being optimized away. We expect this would reduce the final quality of result,
but will make equivalence checking easier.

Leveraging Open-Source CAD Tools Some parts of the CAD process (e.g. synthesis) can be
performed on the source design prior to entering the commercial CAD flow. If trusted
open-source tools are used, then it may be sufficient to compare the design against
this preprocessed design (e.g. a pre-synthesized and optimized netlist), rather than the
original RTL.

Only Check Certain IP One alternative is to perform comparison on only a portion of the
design, such as certain sensitive IP modules like an encryption block. This reduces the
size of the circuit that needs to be compared, and makes it feasible to use a commercial
formal verification tool.

Pre-Bitstream Comparison Rather than comparing against the final bitstream, one can
instead compare against the final netlist reported by the commercial CAD tool. While
this means we must trust the CAD tool to report the netlist accurately, and it isn’t
useful to detect post-generation modifications to the bitstream, it is still a step in the
right direction.

Given these different approaches to the problem, it is possible to explore many different
FPGA compilation and comparison flows. In this article we present a few different approaches
we took that can successfully determine equivalence between source design and compiled
circuit, and can successfully detect malicious modifications to the design during synthesis
and implementation. Each of these approaches requires a non-standard FPGA CAD flow,
and we evaluate the QoR of the produced design against a standard commercial flow.

1.3 Organization
Our different approaches are summarized in this subsection, and then detailed and evaluated
in subsequent sections of the paper (Sections 3 to 5). Each of these sections discusses
the details of the proposed CAD flow, and evaluates it in terms of QoR penalty versus a
traditional commercial CAD flow. Experiments are also performed to inject malicious design
modifications to ensure our proposed flows always detect the modification. Section 6 then
provides a comparison of the different design flows, discussing their respective strengths and
limitations. Section 7 discusses conclusions and future work.

1.3.1 IP-Level Physical Assurance (Section 3) In our first explored CAD flow, we limited
the scope to verifying equivalence for a single IP module in a design. While ideally one
would be able to verify equivalence for an entire design, there are still many cases where
just determining equivalence for a single IP module would be desirable. In modern FPGA
design, 3rd-party Intellectual Property (IP) is often used to reduce the time and cost of the
design process. However, the use of 3rd-party IP is not without risk: the inherent complexity
of most 3rd-party IP modules makes it difficult for the user to determine whether or not the
IP contains anything malicious, such as hardware Trojans.

One step towards securing 3rd-party IP would be to use IP only from trusted 3rd-parties
who have verified and can vouch for the safety of the IP. However, even in this case, one
may still be concerned with how the IP is implemented by the CAD tools, and whether it
remains secure through the CAD process. This is the problem we address in this compilation
and comparison flow.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 5

In this proposed flow, which we refer to as a Physical IP Assurance flow, we assume the IP
module is provided as a placed and routed physical partition that can be instanced in a user
design. This places the burden on the IP provider to ensure the placed and routed design
is safe. However, the comparison process is relatively simple as we can ensure that every
configuration element remains identical to the original design. This may seem relatively
uninteresting and straightforward, but it serves as a good starting point, and even in this
simple case the CAD tool can make some unexpected optimizations that break equivalency.
This work was first published in [6].

1.3.2 IP-Level Functional Assurance (Section 4) The next CAD flow we explore also targets
a comparison process for individual IP modules. In this case, the source IP is a netlist that
has already undergone synthesis and logic optimizations. The IP is then instantiated in a
user design, with constraints added to ensure the CAD flow does not modify this IP.

In this case, determining equivalency is done using a commercial tool, Cadence Conformal,
and some additional considerations are needed to deal with optimizations performed by the
CAD flow. This approach was also previously published in [6].

1.3.3 Bitstream-Level Assurance (Section 5) The previously mentioned techniques leverage
the CAD tool to request details of the implemented design. If the CAD tool were compromised,
or if the generated bitstream were modified post-generation, these approaches may not be
effective. In these cases, it is necessary to understand the contents of the produced bitstream,
and compare it directly to the original circuit design.

In this section of our work, we use relatively new open-source tools that are capable
of converting a proprietary FPGA bitstream to netlist form. This is done using Project
Icestorm [7], which is able to generate technology-mapped netlist files from Lattice iCE40
FPGA bitstream files. This bitstream-reversed netlist is then compared against the original
design, again leveraging commercial equivalence checking tools.

However, the comparison process is much more challenging at this point, as the reverse-
engineered netlist has no signal names from the original design. This also defeats the
simplification taken in our earlier work of just focusing on individual IP in the design, as
it is very challenging to extract individual IP logic out of a netlist with no signal names.
Instead, we are forced to perform comparison on the entire design.

Due to these challenges, our initial attempts at comparison failed, and we instead had to
explore different CAD flows that would make comparison possible. To accomplish this, we
created a Python framework called the BYU FPGA Assurance Tools (bfasst), which allows
for easily composing different CAD flows combining different synthesis, implementation,
bitstream reversal, and formal verification tools, in order to evaluate different design flows on
a large set of benchmarks. To date, our experiments have shown we can perform successful
verification, assuming we use open source synthesis tools to pre-optimize the design, as well
as using modern verification tools targeted toward FPGAs [8].

2 Background
2.1 Related Work
2.1.1 Trojan Detection As the size, complexity, and use of digital circuits continues to
grow, concern is rising about the presence of undetected hardware Trojans [2]. Hardware
Trojans are malicious third-party modifications to circuits, and can take the form of back
doors into circuits, kill switches, intentional leaks of sensitive information, or other harmful
modifications. While evidence of hardware Trojans in deployed systems is limited [1], [2],

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

6 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

3rd Party or
In‐house IP

Hardware Design

Trojan
Detection

Vetted Design

Modified
FPGA

Compiliation
(this work)

Equivalence Checking
(this work)

10101101010101101010
10110101010110101010
10101010101011010110
11110101110110100000
11010111010101010101
01101101010101010110
10110101010110101010
11010101011101010101
01010110110101010101
01101011010101011010
10101101010101101010
10101010101010101101

FPGA
Bitstream

Fig. 2. FPGA compilation flow, demonstrating how the proposed fits together with existing work on
Trojan detection.

their potential for severe destructive capabilities has motivated much research into techniques
to detecting them.

Most of these works rely upon a circuit behaving as normal, then entering some exter-
nally triggered activation state. Techniques have investigated characterizing and detecting
activation logic [9], [10], using embedded circuitry to measure power and temperature
fluctuations [11]–[13], using external measurements such as monitoring supply voltage or
electromagnetic effects [11], [14], [15], or a combination of these techniques [16].

In general, these Trojan detection techniques fall into two categories: 1) those techniques
that inspect and analyze the netlist for suspected Trojans before synthesis [9], [10], and 2)
those that operate in real-time to monitor the active system [11]–[16].

In the case of the former, these netlist analysis techniques are essential and can work in
cooperation with our techniques. That is, an organization would first use these published
techniques to determine that the hardware source code is free of Trojans, regardless of
whether that code was created in-house, or as part of third-part IP. If the IP was obtained
from a trusted party, it may not need to be vetted. Then, after the design is compiled to
an FPGA bitstream, the techniques proposed in this project could be leveraged to gain
assurance that the final design remains safe and untampered. This strategy is illustrated in
Figure 2.

Without the techniques discussed in this work, one could employ the real-time detection
techniques proposed in these other works; however, this may not always be adequate. Firstly,
it may not be possible to deploy the necessary monitoring equipment on-site, and in every
instance of the system. Secondly, while detecting an attack is helpful, the attack could still
render the system inoperable, leak sensitive encryption data, etc.

2.1.2 Attacking FPGAs Our work is aimed at detecting cases where the produced FPGA
bitstream is compromised, but the original circuit design remains safe and unchanged. As
discussed previously, these could occur with compromised CAD tools, or if the FPGA
bitstream was compromised after generation. While these cases my seem improbable, recent
work has shown both their possibility, and potential for significant consequences. In [3]
and [4] the authors show how behavior of normal FPGA CAD tools can be exploited to
insert Trojan activation switches into the design during compilation. These changes are not
detectable in the hardware source code, and require inspection of the FPGA bitstream. In [5]
the authors show that it is possible to locate which portions of an FPGA bitstream control

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 7

certain elements of an AES encryption module, thus allowing them to make modifications
to the bitstream so that the final circuit is much easier to attack, and the encryption key
can be obtained.

Recent work has even shown techniques to recover a fully encrypted bitstream [17].

2.1.3 Open-Source Bitstream Tools The bitstream formats used by the commercial FPGA
CAD tools are proprietary, and it is not documented how changes to the bitstream affect the
circuit implemented on the FPGA. In a sense, this obfuscation provides some protection, and
makes it difficult to modify the bitstream to perform specific tasks (although not impossible,
as demonstrated in [5]).

However, recent projects by many research groups have successfully documented the format
of several FPGA bitstreams [18]. The ability to arbitrarily modify the FPGA bitstream
allows for more advanced bitstream-level attacks, such as those that insert short circuits or
glitches to draw huge amounts of power. This can have extreme effects including shutting
down the system, accelerating circuit wear-out, broadcasting secret messages, or even melting
the solder and permanently damaging the system [19]–[22].

However, the recent availability of FPGA bitstream-level analysis tools is also what enables
this work to take place. Five years ago, the work presented here would not have been feasible.
However, with current open-source tools such as Project X-Ray [23], Project U-Ray [24]
and Project Icestorm [7], it is now possible to develop tools and techniques to determine
equivalence between hardware designs and the resulting bitstreams.

2.1.4 Other Approaches for FPGA Design Assurance Several works have leveraged FPGA
bitstream analysis to detect potentially malicious elements [25], [26], or to establish isolation
between design elements [27]. However, these works are designed to detect specific patterns
in the bitstream circuit. To our knowledge, there are no previously published tools or studies
that attempt to explore general-purpose equivalence checking for the FPGA compilation
process.

2.2 Threat Model
The FPGA assurance flows presented in this paper involve three parties, 1) a trusted content
creator, 2) an end-user, and 3) a comparator as shown in Figure 1. Depending on the process,
these three roles may be played by the same individual, or may be three separate entities.

Trusted Content Creator: The trusted content creator is responsible for creating and
vetting the source design. In assurance flows where we target individual IP (Sections 3
and 4), the content creator is the provider of the IP library. In flows that seek to determine
equivalence of the entire design (Section 5), the content creator becomes both the provider
of any third party IP, as well as the designer that is integrating these IP with their own
content into a final combined design.

We assume the content creator has sufficiently inspected and tested the source design
to determine that it is free from malicious inclusions before beginning compilation. For
example, they may employ the hardware Trojan detection and mitigation techniques described
previously [9], [10].

User: The user represents the designer(s) that are compiling the final hardware design,
and are interested in determining that the compiled design is equivalent to the original
source hardware. In cases where the user is separate from the content creator, such as when
a user is implementing trusted IP in their design, the user is not required to know hardware
Trojan detection and mitigation techniques, nor understand the details within the IP.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

8 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Comparator: The trusted IP files and the user’s final bitstream (or placed and routed
design for pre-bitstream processes) are provided to a party that performs the comparison. The
comparison between the trusted source hardware and the implementation of that hardware
in the compiled design is completely automated.

The party performing the comparison process could be the original content provider, the
user, or another trusted third party. There are a couple benefits to using a third party to
perform the comparison process. First, it mitigates scenarios where an organization was
concerned that a user could intentionally insert malicious hardware during compilation or
post bitstream generation. Second, the techniques presented in this paper are meant to
prevent attacks that could occur if the CAD tools on a user’s system were compromised.
In such a case, it may be possible for the attackers to also compromise the equivalence
checking tools, making them falsely report equivalence. Having a separate party perform
the comparison makes it substantially more difficult for an attacker, as they would have to
compromise tools on two different systems, perhaps belonging to different networks and/or
organizations.

3 An Approach for Physical-Level IP Assurance
This section discusses the first CAD flow we explored, which focuses on solving a narrow
problem: verifying design equivalence for a single trusted source IP when that IP is already
a pre-placed and pre-routed design partition. We explore the design flow where a user
instantiates this IP in their design, and investigate whether the physical placement and
routing remains completely untouched in the final implemented design.

While this may seem relatively uninteresting and straightforward, it serves as a good
starting point, and interestingly, even when this high degree of restriction is placed on the
source design, the CAD flow transformations can still break equivalency.

3.1 Physical Assurance Process
The detailed steps of the process are outlined below and are illustrated in Figure 3.

3.1.1 Trusted IP
(1) Trusted third party creates a Vivado project for a specific FPGA part using the Xilinx

Vivado Hierarchical Design (HD) flow. Vivado HD contains several different flows
centered around the idea of a partitioned design. In Xilinx terminology, a Pblock refers
to a physical partition of the chip, containing a set number of resources.

(2) The trusted third party creates a Pblock, assigns their IP to this block, and performs
synthesis and implementation. It is important to recognize that this will be out-of-
context synthesis, meaning that the IP is synthesized independent from, and without
any knowledge of the user circuit in which it will be instanced. This unfortunately
prevents the synthesis tool from performing any cross-boundary optimizations. For
example, if the user circuit did not use certain output ports of the IP, the synthesis
tool could normally remove the logic from the IP that drives these ports; however,
without this knowledge, such an optimization would not be possible.

(3) Once implemented, the IP is fully contained within this Pblock partition and can be
exported as a Vivado Design Checkpoint (.dcp file). This file is then provided to the
user.

A major disadvantage of this approach is that the IP provider must choose the FPGA part
and exact Pblock location on the chip. This can be mitigated by providing multiple files

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 9

IP Source
Code
(HDL)

Synthesis,
Place & Route
(Vivado HD)

User
Implementation

Flow

Synthesis,
Place & Route
(Vivado HD)

User
Design
(HDL)

Physical
Place & Route
Information

Physical
Place & Route
Information

Information Equivalent?

No Yes

Trusted IP
Flow

Comparison
Flow

Fig. 3. Physical Assurance Flow

for different parts, and a few different locations on the chip to give greater flexibility to the
user, although this places a larger burden on the content creator.

3.1.2 User Implementation
(1) The user creates their full design in HDL and synthesizes it using Vivado.
(2) The user creates a Pblock in their design in the same location as the one chosen by

the trusted IP provider.
(3) The trusted IP (.dcp file) is assigned to the Pblock.
(4) The user design is implemented using Vivado, utilizing the IP from the trusted vendor.

3.1.3 Physical Comparison The final phase of the process is the comparison flow. The user
uses Vivado to produce a checkpoint file (.dcp file) of the final placed and routed full design.
This checkpoint, and the trusted IP checkpoint are both provided to the comparator party.
The comparator party then runs a series of Tcl commands in Vivado to extract design
properties about both design checkpoints. For the full design, the only design properties
that are extracted are those from within the IP partition Pblock.

We have fully automated the extraction and comparison process using TCL scripts
developed for this work. We assume the design tools accurately extract the trusted IP circuit
elements. In the event that the reported results were spoofed, it would be necessary to
instead extract design properties from the bitstream itself, bypassing any reporting from the
untrusted CAD tool.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

10 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

The extracted physical information used in the comparison process includes everything
necessary to fully reconstruct the design on the fabric. In detail, the extracted information
includes:

∙ Sites: a list of all of the physical resources allocated to the Pblock.
∙ Cells: the name, primitive type, configuration (LUT programming bits, for example),

location, and a mapping of netlist pins to physical pins.
∙ Netlist, boundary nets: the names and pin locations of the nets connecting the IP to

the top-level logic.
∙ Netlist, internal nets: the name, wires (if applicable), routing switch configuration (if

applicable), and pin count, of nets internal to the IP.
The comparator party then compares these two sets of properties for equivalence. The

goal of physical assurance is to compare the trusted IP and instantiated IP based on physical
implementation details. If two designs use the same physical resources in the same way, the
two designs are guaranteed to be (barring slight process variations) functionally identical. If a
difference is detected, it would indicate that tampering has occurred during the compilation
process. In reality, additional considerations need to be taken to remove false positives.

3.2 Challenges and Limitations of Physical Assurance
Physical assurance, as a research approach, was selected as it provides a strict guarantee
that the IP is implemented in the exact same manner as provided by the trusted vendor,
down to the individual wiring of each net. Although this introduces some overheads, the
prevailing notion was that, if functional assurance became impossible for some reason,
physical assurance could serve as a final assurance back-stop that would work in most, if
not all, cases.

As an idea, physical assurance is simple enough. However, in practice, due to inherent
CAD tool complexity, direct comparison of the physical manifestations of the trusted and
instantiated IP often failed, and required workarounds. Some challenges we encountered
were:

Global Resources: Locking down the placement and routing of the trusted IP block
sometimes leads to problems. Circuits would fail to route if the trusted IP contained a global
resource such as a clock buffer, as many global resources cannot be included in pBlock
partitions. To avoid this problem, the IP creator would be prevented from instantiating
global resources in their pBlock, and would instead have to instruct the user to instantiate
the resource in their surrounding design.

Pblock location: In certain cases routing would fail likely because the location of the
Pblock increased congestion. This problem can be mitigated if the provider of the trusted
IP generates several versions of the trusted IP, each with different Pblock locations.

Subtle physical optimizations: Despite the fact that Pblock partitioning is meant to
prevent any changes, in some cases, Vivado would occasionally permute the inputs at the
periphery of the trusted IP Pblock. This problem caused most of the benchmarks to initially
fail an equivalence test. This problem was overcome by extracting the LUT pin mapping
from the original trusted IP, and then locking these pins prior to routing the instantiated IP.

Finally, in one synthetic benchmark containing a pipelined version of the MD5 algorithm
(md5_pipelined), Vivado performed a minor optimization, (again, near the periphery of
the Pblock) that occurred because two nets were aliases of one another. After manually
inspecting the design, it was determined that the trusted IP and the instantiated IP were
indeed functionally equivalent; however, they were not physically equivalent. After some

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 11

experimentation, we found that this minor physical difference could be eliminated if the
placement of the Pblock was modified. This is somewhat similar to the problem where
Pblock placement interfered with placement and routing (though movement of the Pblock
as a solution is probably not the best solution). This problem only occurred in one synthetic
benchmark.

3.3 Experiments with Physical Assurance
Experiments were conducted to answer the following questions for our physical assurance
techniques:

∙ Can the assurance approach successfully extract the IP from the user’s implemented
design, compare it against the original trusted IP, and determine that they are identical?

∙ Can the assurance approach successfully detect modifications to the trusted IP that
may have occurred anywhere in the insertion and implementation process?

∙ How does this assurance approach impact the timing constraints and area of the final
implemented design? Or in other words, what does the end user have to “pay”, in
terms of speed and area, to achieve assurance using this technique?

3.3.1 Benchmark Designs Our experiments consist of several designs containing multiple
IP that are each in turn treated as a "trusted IP". In total, 53 different IP modules were
tested; these 53 IP were part of 22 different benchmark circuits. Of the 22, 21 are synthetic
designs, created by interconnecting various modules from Open-Cores (www.opencores.org)
without regard for circuit function. These designs represent a diverse set of module size,
functionality and HDL type. The synthetic designs contain 43 of the IP of interest, as well
as other hardware modules from Open-Cores that weren’t tested, but serve as surrounding
logic. The 22nd benchmark circuit is a functional LEON3 processor (www.gaisler.com/leon3)
from which 10 of the modules instantiated at the top-level are included in our trusted IP
set. In cases where benchmarks contained multiple trusted IP, multiple experiments were
performed, each time selecting one IP module to play the role of the trusted IP block.

The extracted sub-blocks serving as the trusted IP ranged in size from tens to tens of
thousands of logic cells. The benchmark statistics are provided in Table 1, and the full
benchmarks are available at GitHub (www.github.com/byuccl/ipassurance). To set a baseline
for timing and slice utilization, all benchmarks were implemented using a conventional
synthesis, place, and route flow to determine whether timing constraints are met and to
measure slice utilization. These baseline results are used to determine how much (if, at all)
the Pblock-based assurance approach may affect timing and area.

Table 1. Benchmarks

Top-Level
Benchmark IP Module LUTs FFs RAMB18 DSP48
leon3mp (top) 33576 15963 124 16

dsu3 517 407 4 0
irqmp 504 227 0 0
mctrl 207 150 0 0
leon3s 7100 3260 28 4
ahbuart 276 179 0 0
apbctrl 126 89 0 0
spimctrl 197 151 0 0
ahbctrl 353 53 0 0
ahbjtag 242 194 0 0

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

www.opencores.org
www.gaisler.com/leon3
www.github.com/byuccl/ipassurance

12 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

grethm 2125 1145 6 0
Synthetic1 (top) 9391 7661 440 0

aes128 3583 3533 344 0
Synthetic2 (top) 6575 2792 28 0

amber 6011 2333 28 0
basicrsa 540 459 0 0

Synthetic3 (top) 2202 2085 0 0
atahost 451 331 0 0

Synthetic4 (top) 1088 1143 0 0
bcd_adder 18 41 0 0
big_counter 581 201 0 0
bubblesort 402 901 0 0

Synthetic5 (top) 11 42 0 0
counter 1 33 0 0

Synthetic6 (top) 2287 1818 0 0
des3_area 535 64 0 0

Synthetic7 (top) 5426 3992 0 0
des3_perf 5413 3992 0 0

Synthetic8 (top) 9545 6358 98 0
dfadd 3759 2230 2 0

Synthetic9 (top) 3230 1071 0 43
cpu8080 1020 244 0 0
fixed_point_sqrt 460 32 0 24
graphiti 1368 689 0 19
hight 372 102 0 0
lfsr_randgen 2 4 0 0

Synthetic10 (top) 7471 6574 7 14
fm_3d_core 2867 2235 0 10

Synthetic11 (top) 35188 32686 2 240
jpegencode 35187 32686 2 240

Synthetic12 (top) 21764 13447 20 13
m32632 11270 3138 20 13
md5_pipelined 9817 10176 0 0
median 639 125 0 0

Synthetic13 (top) 12713 15202 49 20
mpeg2fpga 10448 14314 43 20
msp430_vhdl 1387 298 0 0
natalius_8bit_risc 29 25 2 0
neo430 816 565 4 0

Synthetic14 (top) 3235 2239 4 2
pci_mini 216 291 0 0
pic 248 114 0 0
potato 2400 1665 4 0
pwm 228 145 0 0
quadratic_func 109 24 0 2

Synthetic15 (top) 6775 3176 0 0
pid 806 385 0 0

Synthetic16 (top) 899 390 0 0

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 13

pid_simple 886 390 0 0
Synthetic17 (top) 8191 4335 0 0

random_pulse_generator 4 33 0 0
sap 68 44 0 0
sha3_high_throughput 5258 2144 0 0
sha3_low_throughput 2639 2084 0 0
simon_core 48 27 0 0

Synthetic18 (top) 32642 1598 0 0
sudoku 32285 1367 0 0
tiny_encryption_algorithm 198 231 0 0

Synthetic19 (top) 1532 1285 0 2
uart2spi 483 414 0 0

Synthetic20 (top) 1811 1063 9 5
vga 632 508 1 0

Synthetic21 (top) 311 219 0 0
wb_lcd 107 79 0 0

3.3.2 Equivalence of Unmodified Circuits After improving our compilation flow to address the
issues discussed in Section 3.2, every benchmark/trusted IP in our suite could be run through
our physical assurance flow (Figure 3) and result in a perfect match between the trusted
IP and the instantiated IP. In other words, our technique to detect circuit modifications
resulted in no false positives.

3.3.3 Detecting Circuit Modifications In addition to verifying that the original circuits could
be verified to be equivalent, we also wanted to ensure that any small modifications made to
the trusted IP would cause the equivalence checking to fail; or in other words, ensuring there
were no false negatives. Our automated tests performed each of the following modifications
three times for each trusted IP:

∙ Randomly select a cell from the instantiating circuit and move it into the trusted IP
Pblock.

∙ Randomly select a cell from the trusted IP and change its location within the Pblock.
∙ Randomly select a LUT or FF from the trusted IP and change its initialization

equation/value.
∙ Randomly select a net, change the route it takes from its source to its sink.

These tests were chosen to mimic any change that might be made to the circuit, malicious
or otherwise. Every modification that was performed was caught by the assurance process,
verifying that the proposed physical assurance flow is extremely sensitive to tampering.

3.4 Impact of Physical Assurance on QoR
For each "trusted IP" and parent benchmark listed in Table 1, we performed compilation
using the previously described physical assurance flow. We then compared the slice utilization
against a standard compilation of the benchmark. All designs were targeted a Xilinx Artix-7
100T FPGA. The results can be seen in Figure 4. In most cases, the additional restrictions
imposed by the physical assurance flow resulted in an increase in the total number of slices
used. On average, slice usage increased by 4.7%. This penalty is expected, as when the IP
is synthesized out-of-context, it cannot employ any cross boundary optimizations, such as
constant propagation or unused logic removal. In some cases the slice count decreased. While

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

14 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Fig. 4. Impact of physical assurance flow on slice utilization. Synthetic IP benchmarks (blue) and LEON3
IP benchmarks (orange).

somewhat unexpected, this is not altogether surprising; the stochastic nature of CAD tools
will naturally produce circuits of varying sizes across different configurations, regardless of
our assurance-based approach. In addition, changes in the circuit can affect the clustering
algorithm and change how many logic elements are placed into each slice, meaning that
while overall slice count could decrease, the internal slice utilization is higher.

We also explored the impact on timing results. Of the 10 experiments run on the LEON3
benchmark, all 10 passed the standard LEON3 timing constraints in both the baseline and
Pblock-based designs. For the synthetic benchmarks, the timing results are less meaningful,
although to gain some insight we applied a 10ns period constraint to all the synthetic designs.
Of the 43 experiments created from the synthetic benchmarks, only one Pblock-based design
(dfadd) failed timing after its baseline design had passed timing.

This suggests that while in some cases the Pblock approach will prevent the CAD tools
from meeting timing, in many cases the timing is not significantly impacted.

4 An Approach for Functional-Level IP Assurance
This section describes the next major assurance process we explored, which we refer to as
Functional IP Assurance. Like the previously described flow, this approach also is targeted
to verifying individual IP instantiation within a larger design.

While the physical assurance process described in the previous section is effective, it places
a large burden on the IP creator, requiring vetted placed and routed instances of the IP
for any FPGA part the user wishes to use. In contrast, our functional assurance process
described in this section aims to compare the IP at a functional level, ensuring that the
netlist behavior is equivalent between the original IP specification and the final implemented
design.

To determine equivalency between netlists, we leverage a commercial tool, Cadence
Conformal. Conformal works by trying to map key points (registers) between the two
netlists, and then verifies that the combinational logic between these registers is logically
equivalent. This approach alleviates much of the burden placed on the IP provider by the
physical assurance flow, as it no longer means the IP must be placed and routed for a specific
part. Instead, the trusted IP can be specified as a netlist.

While ideally this would mean that the trusted IP could be provided simply as RTL
code, in our testing, we found that the optimizations performed by the CAD flow during

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 15

IP Source
Code
(HDL)

Synthesis
(Vivado HD)

Trusted IP
Flow

User
Implementation

Flow

Synthesis,
Place & Route

(Vivado)

User
Design
(HDL)

Xilinx-Mapped
Netlist

Xilinx-Mapped
Netlist

Comparison
Flow

Cadence Conformal

Conformal Reports Equivalence?
No Yes

Netlist Extraction

Verilog Module
(Mapped to Xilinx

Primitives)

Fig. 5. Functional Assurance Flow

synthesis are too significant, and Conformal will almost always report that the designs were
non-equivalent. Instead, we take the approach of pre-synthesizing the trusted IP, and then
having the user incorporate the technology-mapped, optimized netlist into their full design.
The full process is described next.

4.1 Functional Assurance Process
The functional assurance process is described below and is illustrated in Figure 5.

4.1.1 Trusted IP In the trusted IP flow, the trusted content creator creates the IP as a
module using Vivado Hierarchical Design. Using the standard out-of-context CAD flow, the
IP is synthesized, optimized, and mapped to Xilinx FPGA primitives. Finally, the trusted
content creator extracts a Verilog netlist for their IP using the write_verilog command,
which creates a netlist of Xilinx primitives (LUTs, FFs, etc.) This technology mapped netlist
would then need to be vetted by the IP creator before being provided to the user.

4.1.2 User Implementation Using the standard Vivado flow, the user incorporates the netlist
into their design. Because the trusted IP is in the form of a Verilog netlist, instantiating the
IP is a straightforward and simple task; the user can instantiate the Verilog module in their
RTL design in the same manner as any other Verilog module. In addition to instantiating the
IP, the user must also apply a few additional constraints to prevent the CAD design tools
from making further optimizations to the IP. This step makes it possible for the comparison

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

16 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

flow to determine equivalence between the trusted and instantiated IPs. We accomplished
this step by applying the DONT_TOUCH attribute to the following objects:

∙ The cells within the instantiated IP
∙ The nets within the instantiated IP
∙ The hierarchical cell that represents the instantiated IP

For example, a user could apply these attributes to an IP named aes128_0 by adding the
following lines of code to their constraints file:

Listing 1. Tcl commands to prevent further netlist optimization
set_property DONT_TOUCH true [get_cells aes128_0 /*]
set_property DONT_TOUCH true [get_nets aes128_0 /*]
set_property DONT_TOUCH true [get_cells aes128_0]

The DONT_TOUCH attribute prevents the Xilinx CAD tools from optimizing or changing
anything it is applied to. This forces the CAD tools to place and route the IP netlist without
changing its structure, and therefore its behavior. While this initially may seem drastic, it
is important to recognize that the trusted IP has already undergone logic optimization in
the trusted IP Flow. The DONT_TOUCH attribute simply prevents further optimizations to
the IP, such as cross-boundary optimizations. Furthermore, applying DONT_TOUCH to the
target IP has little effect on the optimization of the user’s surrounding circuitry. The user’s
surrounding circuit will still be fully optimized, and in fact, can still leverage knowledge of
the content of the trusted IP.

Once the user has instantiated the trusted IP netlist in their design they can perform imple-
mentation (place & route) as usual. After implementation, the user uses the write_verilog
command to extract a Verilog netlist from the implemented design. Like the trusted IP
netlist, this user design netlist contains Xilinx primitives. As in the Trusted IP Flow, we
assume that Vivado faithfully retrieves the correct netlist, while acknowledging that a
compromised version of Vivado could potentially retrieve a spoofed netlist (addressed in
Section 5).

4.1.3 Functional Comparison The final phase of our implementation is the comparison flow,
where Cadence Conformal, a formal equivalence checker1, is used to compare the trusted IP
netlist and the user’s netlist.

4.2 Challenges and Limitations of Functional Assurance
One benefit of providing assurance at the functional level is that many of the challenges
present in the physical assurance process (discussed previously in Section 3.2), such as global
resources or Pblock location, no longer pose an issue. However, we did encounter a couple of
new challenges:

Renaming Rules: When exporting the instantiated IP as Verilog netlists, Vivado would
sometimes unexpectedly rename input and output ports. This happened to only a handful
of ports on only a few of the 53 instantiated IP blocks. This unexpected renaming caused
problems downstream in the assurance process—because Conformal relies on the primary
input and output names of the trusted and instantiated IPs to match, such renaming breaks
1For the purposes of this article, it is assumed that logical equivalence implies functional equivalence.
Although logically-equivalent netlists may differ in treatment of certain don’t-care conditions, for example,
it is assumed that these differences, if they occur, do not affect the functional behavior of the IP in any
meaningful way.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 17

Conformal’s ability to determine equivalence. We overcame this challenge by writing a netlist
parser that would find where instances of renaming had occurred. The parser would then
generate a list of TCL commands which were issued to Conformal to inform it of equivalence
between renamed ports.

Unused Outputs: One special case that we encountered was when certain outputs of the
IP were unused in the parent design. Normally in such a case Vivado would simply remove
the unused internal pins and associated logic; however, because we applied a DONT_TOUCH
attribute to all pins, the unused internal pin remained in the design, and Vivado drove this
pin by a constant 0. However, when processed by Conformal, this internal pin was optimized
away, not driven by constant 0. This subtle and harmless discrepancy was enough to cause
equivalence checking to fail. To handle this we included a script in our flow that locates
the unused IP outputs and auto-generates a list of TCL commands that would instruct
Conformal to ignore the unused outputs when making the comparison.

4.3 Experiments with Functional Assurance
Similar to the experiments discussed in Section 3.3, we wanted to ensure that the proposed
technique could reliably determine equivalence for an unmodified IP (ie, no false positives)
and reliably detect non-equivalence for a modified IP (ie, no false negatives).

For our experiments we used the same set of designs as in the previous section (LEON3
and a collection of synthetic benchmarks, Table 1), and used the same approach of choosing
one IP at a time to serve as the "trusted IP".

4.3.1 Equivalence of Unmodified Circuits After improving our compilation flow to address
the issues discussed in Section 4.2, every benchmark/trusted IP in our suite could be run
through our functional assurance flow (Section 4.1/Figure 5) and result in a perfect match
between the trusted IP and the instantiated IP.

4.3.2 Detecting Circuit Modifications Similar to the physical assurance testing, we developed
a sensitivity analysis to demonstrate that our functional assurance flow successfully detects
unwanted modifications. We tampered with the netlist of the designs in the following ways:

∙ Pick a random Lookup Table (LUT) in the instantiated IP and modify its logic function.
∙ Leak a random wire in the instantiated IP to a secretly added backdoor port.

We tampered with each of our instantiated IPs once for each of the above modifications.
This gave us a total of 106 tampered designs which we used to test the sensitivity of our
approach. Our approach caught all of the malicious modifications that we made.

4.4 Impact of Functional Assurance on QoR
As with the physical assurance flow, for each "trusted IP" and parent benchmark listed in
Table 1, we performed compilation using our proposed flow, and compared slice utilization
against a standard Vivado compilation. The results are shown in Figure 6.

In most cases, the resource utilization increases, which is expected due to the fact that
the flow prevents any cross-boundary optimization between the trusted IP and the rest of
the design. The DONT_TOUCH directives also likely prevent any physical optimizations that
may have normally taken place post-synthesis. On average, designs that used the functional
assurance method used 2.8% more slices than the baseline design. The greatest performance
decrease was observed with the sudoku design, which was 27.7% larger than its baseline
design. On the other end of the spectrum was the msp430_vhdl design, which was actually
7.6% smaller than its baseline design. Again, this unexpected reduction can occur in some

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

18 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Fig. 6. Impact of functional assurance flow on slice utilization.

cases due to the stochastic nature of the CAD tools. It makes sense the penalty varies from
design to design as many optimizations, such as logic minimization based on constant or
unconnected inputs, will depend on the surrounding design.

Of the 10 experiments run on the LEON3 benchmark, all 10 passed timing in both
the baseline and Pblock-based designs. Of the 43 experiments created from the synthetic
benchmarks, no designs failed our synthetic 10ns timing constraint after its baseline design
had passed timing. This suggests that our approach does not readily cause a design to fail
timing if its baseline comparison design passed timing, and that the effect of the functional
assurance approach on timing is likely small.

5 Bitstream-Level Design Assurance
The physical and functional IP assurance techniques presented in Sections 3 and 4 relied
upon the CAD tool to report details of the implemented design. If the CAD tool were
compromised, or if the generated bitstream were modified post-generation, these approaches
would not be effective. This limitation has motivated our most recent work, described in
this section, which is to explore techniques to verify equivalence at the bitstream level.

This work aims to address this limitation by leveraging open-source bitstream tools
which can convert a binary bitstream back to a human readable netlist. This netlist is then
compared against the original design.

The reverse-netlist tool we employ in this section of our work is part of Project Icestorm [7],
which only supports Lattice iCE40 FPGAs. At the time of this work, and to our best
knowledge, this was the only FPGA bitstream to netlist tool available2. As such, the tool
flows discussed in this section target the much smaller Lattice iCE40 family of FPGAs,
rather than the Xilinx 7-series FPGAs targeted in the earlier sections.

5.1 New Challenges Imposed by Bitstream-Level Assurance
Trying to perform comparison with a bitstream-reversed netlist introduces several new
challenges not present in our earlier work. The paramount challenge is that the reverse-
engineered netlist has no net names from the original design, nor does it have any semblance

2At the time of publishing there is now another tool that supports Xilinx FPGAs, the Symbiflow fasm2bels
tool, https://github.com/SymbiFlow/symbiflow-xc-fasm2bels.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 19

of logical partitioning or separation between the different IP or submodules that made up
the original design.

The lack of net names makes the equivalence checking challenging, as the formal verification
tools have no starting point on which to perform comparison. Fortunately the placement
constraints file can be leveraged to extract net names of the primary input and output pins.
In fact, bitstream reversal tools typically allow you to provide the file of original placement
constraints, and the produced netlist will automatically have primary input and output
signal names restored. However, all internal net names are inevitably lost.

Not being able to extract out IP or submodules from the reversed netlist means that
equivalence checking must now be performed on the entire design. This introduces a funda-
mentally different problem that what we tackled in earlier sections. While our earlier work
only focused on vetting trusted IP that were inserted into a larger design, we are now forced
to perform equivalence checking on the entire design, including the user’s own logic.

Not only does this mean we are forced to tackle larger circuit sizes, it also defeats some of
the assumptions we made in our earlier work. For example, in our functional IP assurance
flow described in Section 4, our solution assumed that a trusted third party would pre-
synthesize a design, and then vet that the optimized, technology mapped netlist was safe.
This assumption can no longer be the case if we instead are trying to determine equivalence
for the entire design, which now contains user-created content.

In our initial testing we explored a straightforward approach passing several of our
benchmark designs through the commercial Lattice FPGA compilation flow, iCECube2, to
produce a bitstream, and then using Project Icestorm to convert the bitstream back into
a Verilog netlist. The original RTL and reversed netlist are then compared using Cadence
Conformal. This flow is illustrated in Figure 8a. Unfortunately, this basic approach did not
work well, and very few of our RTL benchmarks were reported as equivalent to the produced
bitstream. This is not surprising given the significant transformations that take place during
the CAD flow.

5.2 BYU FPGA Assurance Tools (bfasst) Framework
Given the fact that the basic commercial CAD flow broke our equivalence checking, we set
out to explore alternative CAD flows that would prove more effective. However, composing
custom CAD flows and running them for large sets of benchmark designs is very time
consuming. In earlier sections we presented two different custom CAD flows for IP assurance.
These CAD flows required significant manual effort to execute the custom CAD stages for
large set of benchmarks. As such, it was our goal to develop a more flexible framework, that
would allow us to programmatically compose custom CAD flows and collect results on a
large number of benchmark automatically.

The framework we developed is implemented as a Python package, which we refer to as
the BYU FPGA Assurance Tools (bfasst) package. Figure 7 provides an overview of this
framework, and illustrates how different modules can be plugged in to perform the various
stages of compilation. Our custom CAD flows all follow the same pattern: the user’s RTL
design is synthesized, optimized, and implemented to generate a bitstream. This bitstream
is then processed with an open-source tool, such as Project Icestorm to generate a netlist
representation of the bitstream. We then use formal verification to validate the netlist against
previous stages in the synthesis process. Doing so allows us to identify if the bitstream is an
accurate representation of the design at these stages.

While the primary motivation behind this framework is for design assurance purposes,
it is likely useful by others in the FPGA community who are interested in composing and

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

20 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Fig. 7. bfasst offers a modular approach to synthesis, bitstream reversal, and verification, allowing
different tools to be swapped in for the various validation steps.

evaluating different CAD flows. The tool is open source, and available at github.com/byuccl/
bfasst.

BFASST is implemented as a Python package, the heart of which is a collection of classes
that are each responsible for executing one tool for a single stage of the FPGA CAD flow.
These classes are subclassed from base classes for each stage of the CAD flow, meaning that,
for example, all synthesis-type tools adhere to a common interface. This approach means
that these tools can then be stitched together to form custom CAD flows with relative
ease. Stitching these tools together is done by implementing a custom Python function that
instances and connects the various chosen tools. Listing 2 provides the Python code for
creating the flow shown in Figure 8a.

This custom flow function is then registered with BFASST, which provides command-line
scripts to invoke the CAD flow. Users can call a simple script (run_design.py <flow_name>
<design_path>), that executes a single benchmark circuit and CAD flow, or alternatively,
users can build experiment configuration files that specify a list of benchmarks and CAD
flows to execute (run_experiment.py <config.yml>), which will run all flow/benchmark
combinations and generate a report to aggregate the results.

It is worth noting that while arbitrary CAD flows can be created, the selected tools must
still be compatible with each other. For example, the implementation and bitgen tool must
receive a netlist in compatible format from the logic optimization and mapping tool.

One challenge we encountered is that we wanted to use the same benchmark designs on
multiple different commercial and open-source tools (Lattice, Xilinx, Yosys, etc); however,
each of these uses proprietary project management files to list design sources, properties,
libraries, etc. As such, we also developed a simple configuration file (YAML format) that we

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

github.com/byuccl/bfasst
github.com/byuccl/bfasst

Approaches for FPGA Design Assurance 21

Listing 2. BFASST Flow Example
def flow_ic2_lse_conformal (design , build_dir):

Run Icecube2 LSE synthesis
synth_tool = IC2_LSE_SynthesisTool (build_dir)
status = synth_tool . create_netlist (design)
if status .error:

return status

Run Icecube2 implementation
impl_tool = IC2_ImplementationTool (build_dir)
status = impl_tool . implement_bitstream (design)
if status .error:

return status

Run Project Icestorm bitstream reversal
reverse_bit_tool = Icestorm_ReverseBitTool (build_dir)
status = reverse_bit_tool . reverse_bitstream (design)
if status .error:

return status

Run Cadence Conformal
compare_tool = Conformal_CompareTool (build_dir)
status = compare_tool . compare_netlists (design)

return status

use in our framework to describe a design’s sources and properties. These design configurations
files are parsed by our framework, populated into a Design class, and provided to the various
tool wrappers. This means that benchmark designs only need to be setup once in our
framework, and then can be processed by all the supported tool flows.

5.3 Choosing an Effective CAD Flow for Equivalence Checking
We initially leveraged our BFASST framework to test a standard commercial flow, as shown
in Figure 8a. As mentioned previously, this equivalence checking failed for the vast majority
of our benchmarks; only 12% of produced bitstreams were reported to be equivalent to their
original RTL.

The primary issue here is that we are attempting to compare a netlist representation of
the design against the RTL. When we use Cadence Conformal for comparison, Conformal
tries to match key points (registers, I/O, etc.) between the two designs, and then compares
the logic between key points. However, the synthesis tools will make optimizations to the
design during synthesis and implementation that can change the logic between key points
without changing the functionality of the design (e.g. register retiming or removing redundant
registers). Even without substantial optimizations, it is entirely possible that the design
representation in the RTL is different enough from the design representation in the netlist
that they cannot easily be compared.

We leveraged our BFASST framework to explore various CAD flows, in hopes of locating
a CAD flow that could effectively be used for verification. After testing several different

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

22 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

CAD flows, we settled on the flow shown in Figure 8b, which consisted of the following
modifications:

(1) Rather than comparing the reverse netlist against the original RTL, we compare it
against a netlist that has already undergone synthesis, logic optimization and technology
mapping. While it would be possible to export such a netlist out of the commercial flow,
a major motivation of this work is to establish an equivalence checking flow that does not
need to trust the closed-source commercial tools. As such, our general approach is to use a
open-source synthesis tool that can pre-synthesize and optimize the design prior to entering
the commercial CAD flow.

In our Lattice-based tool flow, we chose to use Yosys [28], an open-source synthesizer
capable of compiling Verilog HDL to a technology mapped netlist targeting Lattice iCE40
FPGAs. While we recognize that using an open-source tool does not automatically mean it
is free from malicious behavior, it is a step in the right direction, and should an organization
desire, they could invest time into inspecting the source code and establishing some level of
trust, or alternatively, capable organizations could develop their own synthesis or bitstream
reversal tools if they did not trust existing open-source tools.
(2) We configured the Lattice toolchain to use the Synopsys Synplify synthesis tool (it
offers both Synplify and LSE synthesis tools). Even though the netlist provided by Yosys
is already synthesized and mapped to primitives, you must still use a synthesis front-end
with the iCECube2 toolchain. When using the Synplify front-end, more of our benchmark
designs passed the verification flow. While further investigation is required, it seems that
this tool was less likely to modify our already technology mapped netlist.
(3) To further enhance our equivalence checking flow, we elected to use a different compar-
ison tool, OneSpin 360 EC-FPGA [8]. Unlike Conformal, this tool is specifically designed
to target FPGA design flows, and is advertised as capable of determining equivalence in
the presence of additional optimizations, such as FSM re-encoding, pipelining, retiming and
others.

Using this new flow, we were able to establish equivalence for 100% of our benchmark
designs (ie. eliminate all false positives of design mismatches). While we believe this is
a terrific result, and a key step forward toward building general-purpose bitstream-level
equivalence checking tools, a few key limitations should be noted:

(1) Our flow is currently dependent upon having a tool to convert the bitstream back
into a netlist. This means that our work is limited to Lattice iCE40 FPGAs, a small
fraction of the entire FPGA market. However, many ongoing projects such as Project
X-Ray [23] and Project U-Ray [24] are working to establish such tools for larger families
of FPGAs, and we are currently working to expand our flow to include these tools.

(2) Our current flow uses the Yosys synthesis tool. Yosys only accepts Verilog HDL as
input, as such, the number of our benchmark designs we could pass through this flow is
much smaller than what we used in earlier sections (Table 1). The Verilog benchmarks
we used the bitstream-level assurance experiments in this section of the article are
found in Table 2. The Orig column in the table provides benchmark statistics for the
baseline commercial flow (flow from Figure 8a).

(3) The iCE40 FPGA family consists of very small FPGA parts. As can be seen in
Table 2, our benchmark designs are limited in size to only thousands of LUTs, orders of
magnitude smaller than what is available in the largest modern FPGAs. Even though
the designs are small, the comparison runtime is still significant (as discussed later in

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 23

Logic
Optimization &

Mapping

Implementation
& Bitgen

Bitstream
Reversal

Formal
Verification

RTL

Reversed Netlist

Lattice iCECube 2

Project Icestorm

Cadence
Conformal

Lattice LSE

Only 12% of designs pass formal
verification comparison

Commercial Flow
B1

5
(a) Initial CAD Flow

Revised CAD Flow
 Pre-synthesizing with trusted

open-source Synthesis tool

plus:

 Using a newer formal verification
tool (OneSpin 360 EC-FPGA)

Synthesis

Logic
Optimization &

Mapping

Implementation
& Bitgen

Bitstream
Reversal

Formal
Verification

RTL

Reversed Netlist

Lattice iCECube 2

Project Icestorm

Synopsys Synplify

100% of designs pass formal
verification comparison

Yosys

OneSpin 360
EC-FPGA

B1

6(b) Revised CAD Flow

Fig. 8. Two CAD flows created using the BFASST framework.

this section). As such, we recognize that there are still significant scalability issues to
tackle in future work.

(4) Our proposed flow relies heavily upon open source tools, particularly to first perform
initial synthesis and logic optimization to produce a netlist used for later comparison,
and second, to produce a reversed netlist from the final bitstream. Many organizations
may be hesitant to trust and integrate these unverified open-source tools into their
toolchain. In such cases the organization may have to produce these tools in-house (for
example, we know of a few research groups that have created their own bitstream to
netlist tools internally), or advocate for this functionality to be provided by existing
commercial parties.

5.4 Detecting Circuit Modifications
To validate this flow, we used a similar approach to earlier sections (Sections 3.3.3 and 4.3.2),
and modified the design in some small but malicious way.

To do this we modified our baseline CAD flow (Figure 8b), and added an additional step
that injects some modification into the design (Figure 9a). The error injection phase is
inserted immediately after the Yosys synthesis stage, allowing us to make modifications to
the design in the Yosys netlist. By making design modifications to the Yosys netlist, we can
simulate various types of design modifications that may be performed by an attacker.

In our experiments we explore three types of design modifications (Figure 9b):

(1) LUT Corruption. We corrupt a LUT in the design by flipping a bit in the LUT init
string in the netlist, changing the logic function of that LUT. We perform two variants
of this error injection – one where we modify a single LUT bit in the design, and one
where we select and flip five bits in the design. This second test is done to increase the
likelihood of meaningfully impacting the design with this error type.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

24 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

(a) Modifying the BFASST flow (b) Types of design modifications

Fig. 9. Injecting design modifications

(2) Crossed Wires. We take two random signals and swap their sources, so that their
fanout is fed by the wrong source.

(3) Signal Tapping. We pick a random non-I/O signal in the design, and tap it by adding
an extra output port to the design that is driven by the selected signal.

As can be seen in Figure 9a, we perform two equivalence checks with OneSpin 360 for
every injected error. First, we perform a comparison between the netlist generated by Yosys
and the corrupted netlist generated by the error injection tool. We then perform a second
comparison between the Yosys-generated netlist and the reverse-engineered netlist (created
from the final bitstream).

The first comparison allows us to verify that the design modification meaningfully impacts
the design. Because the error injection tool injects its errors at random, it is possible for it
to modify the design in a way that does not actually affect the functionality of the design.
For example, if the sources of two wires are swapped, but the two wires are both part of
the same AND reduction operation, then the swap has no impact on design functionality. A
second, more common example, is that flipping a bit in a LUT’s init string may not always
affect the functionality of the design, as not all LUT inputs are always used. The second
functional comparison – between the Yosys netlist and the reverse-engineered bitstream
netlist – is the comparison the BFASST tool would perform under normal operation.

Between the two comparisons, we can determine if a design modification actually impacts
the design, and if it does, whether or not we can detect the error once the design has been
fully synthesized and reverse-engineered.

For each benchmark in Table 2 we completed 20 instances of the design modification flow
(five each of single-bit LUT corruption, five-bit LUT corruption, crossed wires and tapped
signal). In our testing, we were always able to detect circuit modifications that changed the
functionality of the design.

5.5 Impact of Bitstream-level Assurance on Runtime and QoR
5.5.1 Runtime The first overhead we investigated was the runtime of performing the
comparison using the commercial equivalence checking tool, across our suite of benchmarks.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 25

1

10

100

1000

10000

100000

1000000

A
ve
ra
ge

 C
o
m
p
ar
is
o
n
 R
u
n
ti
m
e
 (
s)

Benchmark

Golden Modified Design

Fig. 10. Comparison runtimes for the golden unmodified design, and the modified design where a
malicious design modification is made. For the Modified Design series, the value represents the average
runtime across all design modification runs.

(a) All benchmarks (b) y80_opencores benchmark

Fig. 11. Histogram showing distribution of runtimes. This includes the golden comparison, plus both
comparisons (shown in Figure 9a) for each of the 20 design modification runs.

Figure 10 provides these results. The Golden series, colored in orange, provides the comparison
runtime for the various benchmarks without any design modifications. Runtimes vary from
3.2s to 308s, indicating that for even these small designs, comparison runtime may be
significant.

When designs are modified, the comparison runtimes become much larger. This is possibly
because the tool must now exhaustively search across all possible mappings of internal state
to conclude that there is no mapping that produces an equivalent result. The runtimes of the
equivalence checking, averaged across all design modification runs, is shown in the Modified
Design series in Figure 10. These averages range from 8.0s to 18039s (about 5 hours) (it
should be noted that a few designs are excluded from this figure as they had instances
where the equivalence checking of the modified design never returned, even after more than
a week of execution time). Runtimes vary drastically from one design modification to the
next; Figure 11a provides a histogram of runtimes for all benchmarks. Figure 11b filters this

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

26 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

Table 2. Area overhead of proposed bitstream-level assurance flow

Benchmark # LUTs # FFs # CARRY # BRAM
Orig New Orig New Orig New Orig New

a25_coprocessor 219 254 171 171 0 0 0 0
counter 34 65 32 33 32 30 0 0
pid 1505 1308 394 396 0 0 0 0
pwm 372 570 145 146 75 150 0 0
random_pulse_gen 40 38 33 33 0 0 0 0
simon_core* 213 353 167 281 21 38 2 0
uart2spi 916 1143 429 456 32 70 0 0
wb_lcd 206 242 85 97 19 18 0 0
LC3_bobby 568 687 187 187 45 44 1 1
natalius_processor 423 532 111 124 25 49 9 9
mips_16_fixed 863 931 298 300 23 43 1 1
uart_chisel 129 167 60 64 24 30 0 0
median_fixed 1052 1076 45 124 121 483 0 0
cpu8080* 2466 2349 243 243 331 337 1 0
pci_mini 565 715 340 369 5 8 0 0
y80_opencores 4018 2972 407 407 86 90 0 0
aes_opencores 3149 3202 924 922 31 34 0 0
Mean 476.2 554.8 160.9 181.4 51.2 83.8 0.8 0.6

+16.5% +12.7% +63.7% -25%
Mean (excluding *) 450.2 519.3 156.2 172.7 34.5 69.9 0.7 0.7

+15.3% +10.6% +102.6% 0%

Note: Orig indicates the original commercial flow (Figure 8a), while New indicates the
proposed flow that enables equivalence checking (Figure 8b). Means are provided using
geometric mean for LUTs/FFs, and arithmetic for CARRY/BRAM (which contain zeros).
The final row excludes the two benchmarks where the flows differ in number of BRAMs
used, as it appears in these cases the new CAD flow is implementing some BRAM content
with other resources.

data to only the y80_opencores benchmark, and demonstrates that even within the same
benchmark, runtimes vary by over 100x depending on how the design is modified.

While the modified design runtimes are lengthy (and in a few cases never complete), this
only exists in the rare case when the design has been modified, and the comparison tools
struggle to find an equivalence. In a normal design flow, the design would be unmodified, and
a designer could gain assurance of equivalence in a much shorter runtime. It would typically
only be in the case of malicious design modification that these much longer runtimes would
manifest.

5.5.2 Area Overhead In most cases, pre-synthesizing the design to a technology mapped
netlist before entering the commercial flow comes at a cost. Table 2 provides the per-
benchmark resource usage, post-implementation, for the original commercial flow (Figure 8a)
and our proposed flow (Figure 8b). The LUT and FF usage values are also visualized in
Figure 12. On average, our proposed flow increases LUT usage by 15–17% and FF usage by
11–13%.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 27

Table 3. Comparison of Assurance Approaches

Goal
Area

Overhead Advantages Limitations/Disadvantages
Physical IP Assurance (Section 3)

Verify placement and
routing of trusted IP
in implemented par-
ent design.

+4.7% Slices — Detects malicious mod-
ifications to design during
CAD flow.
— Detects any discrepancy,
including physical-level at-
tacks.
— Simple and fast compari-
son process.

— Requires IP provider to
provide placed and routed
Pblock.
— Provided IP restricted to
implemented location and
target part.
— Restrictions on global re-
source (e.g. BUFG cannot
be placed within Pblock).
— Does not detect modi-
fications to the bitstream
post-generation.
— Trusts CAD tool to out-
put true implementation de-
tails.

Functional IP Assurance (Section 4)

Verify functional
equivalence of trusted
IP in implemented
parent design.

+2.8% Slices — Detects malicious mod-
ifications to design during
CAD flow.
— IP provider creates opti-
mized netlist; more flexible
than providing a placed and
routed Pblock.

— Comparison process re-
quires commercial formal
verification tool.
— Does not detect modi-
fications to the bitstream
post-generation.
— Trusts CAD tool to out-
put true implementation de-
tails.

Bitstream-Level Assurance (Section 5)

Verify equivalence of
bitstream to original
RTL design, leverag-
ing pre-synthesis with
open-source tool.

+15% LUTs — Detects malicious mod-
ifications to design during
CAD flow, or to bitstream
post-generation.
— Operates on entire de-
sign, not just a single IP.
— Does not rely on trusting
commercial CAD flow.

— Comparison process re-
quires commercial equiva-
lence checking tool.
— Requires a bitstream to
netlist tool, which have only
been developed for certain
FPGA vendors and families.
— Trusts open-source CAD
tool to output true imple-
mentation details.
— Longer comparison run-
times; performing equiva-
lence checking on entire de-
sign may not be scalable to
larger design sizes.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

28 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

10

100

1000

10000

R
es

o
u

rc
e

U
sa

ge

Benchmark

LUT (Orig) LUT (New)

FF (Orig) FF (New)

Fig. 12. Resource Usage

6 Comparing Different Assurance Flows
Table 3 provides a summarized comparison of the different assurance flows. The Physical IP
Assurance flow provides the greatest guarantee that the trusted IP is implemented correctly
in the design, as it guarantees that every placement and routing matches the provided
implemented IP. This prevents attacks that could bypass a functional equivalence check,
such as creating very long routing paths that violate timing constraints and cause the IP to
not function correctly. However, this guarantee comes at a price, as the IP provider must
supply the IP already implemented. This requires more burden on the IP provider to vet
that the implemented design is correct and safe. It also hinders use by the designer, as the
IP would be locked to a certain location and FPGA part. In all likelihood, those wanting
to pursue this option would require that the IP provider implement the IP for several chip
locations and/or parts. This flow also has additional restrictions due to what global resources
can legally be placed within a Pblock; for example, the IP could not contain a BUFG or
other similar resources. In addition, the assurance flow comes at a cost. Our experiments
indicated that slice usage increases by almost 5% on average.

The Functional IP Assurance flow addresses some of these issues by allowing the IP
provider to create a pre-optimized netlist. Compared to Physical IP Assurance, this provides
greater ease and flexibility to the user as they do not not have to physically partition their
design, but can rather just instantiate the trusted IP netlist. In addition to the ease of use
improvements, it also incurs less overhead; our experiments found just a 3% average increase
to number of slices. However, it should be noted that this additional flexibility comes at a
price; it only protects against tampering at the logical (i.e. RTL, gatelist, or netlist) level of
the IP. It does not protect against tampering at the implementation level of the design, i.e.
placement and routing. For example, a malicious CAD tool or attacker could tamper with

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 29

the IP by placing its cells unnecessarily far apart from each other, thus slowing down timing
and degrading the IP’s performance.

Both of these IP-centric assurance flows take the approach of having the CAD tool report
the IP as part of the implemented final design. This introduces some trust in the CAD flow,
and also means that modifications to the bitstream post-generation would be undetected.
Our final approach, Bitstream-Level Assurance addressed this limitation by leveraging open-
source bitstream to netlist tools to generate a netlist for comparison against the original
design.

However, the reversed netlist no longer contains any internal net names, hierarchy, or
module partitions, meaning that the comparison processes must be performed on the entire
design, and the runtimes are significant for even small designs.

The overhead we measured for the bitstream-level assurance (15% increase to LUTs) is
larger than the other approaches; however, its important to recognize that these earlier
approaches only protected a single IP in the overall design, while the bitstream-level assurance
targets the entire design. This would likely account for the larger overhead observed.

7 Conclusion and Future Work
In conclusion, our different assurance flows demonstrate that with some modifications to the
default FPGA CAD flow, it is possible to assure designers that their compiled hardware design
is equivalent to their trusted source design and/or IP. All of the processes we described in
the article are fully automated, suggesting that designers and engineers can easily determine
the integrity of their designs without needing hardware security expertise.

The different approaches discussed in the paper have various strengths and weaknesses,
and organizations may choose different approaches based on their security goals and needs.
Overall, the different approaches all come at an area cost (3–16% increase in logic); however,
we believe that in most cases this cost would be acceptable for the assurances that can be
provided.

Although the results we have obtained are promising, this is still only a step toward the
larger goal of assuring the FPGA design process for arbitrary designs and FPGA families. A
number of key challenges remain:

(1) The runtimes we encountered were significant, and novel approaches will be needed
to scale this work to larger designs. There is active work in developing better graph
isomorphism (graph matching) algorithms [29], [30] that will hopefully enable more
scalable equivalence checking tools in the future.

(2) For certain benchmarks, the area overheads can be substantial, exceeding 20% overhead.
In some cases a designer may not have enough spare logic on their device to use these
techniques. It would be interesting to investigate what assurance techniques could be
applied in such resource-limited scenarios.

(3) The functional and bitstream-level approaches we used required performing equivalence
checking against an optimized and mapped netlist, rather than the original RTL. While
capable organizations could ensure that this optimized netlist remains free from
malicious content, it requires time and effort. In future work it would be beneficial to
explore whether verification could be successful if attempted in smaller increments.
For example, comparison could be done before and after each individual stage of the
flow, rather than our proposed techniques which performed equivalence across many
steps of the CAD flow.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

30 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

(4) Bitstream documentation is limited, and further open-source tools will be required to
provide these assurances for a wider set of FPGA families.

(5) As hardware design shifts to higher abstraction levels (high-level synthesis tools,
domain-specific language compilers) the assurance problem grows as it will become
more challenging to prove equivalency with these higher-level input descriptions.

While several challenges remain in the face of general FPGA design assurance, we believe
the outlook is still positive. The work presented in this paper would not have been possible
without the advancements in open source tools over the past few years, and we believe
growing traction in the open source community will likely open the door to further verification
efforts in the future.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

Approaches for FPGA Design Assurance 31

References
[1] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39, May

2008.
[2] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware

trojans: Lessons learned after one decade of research,” ACM Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, 6:1–6:23, May 27, 2016.

[3] C. Krieg, C. Wolf, A. Jantsch, and T. Zseby, “Toggle MUX: How x-optimism can lead
to malicious hardware,” in Design Automation Conference (DAC), Jun. 2017, pp. 1–6.

[4] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: A stealthy FPGA trojan injected
and triggered by the design flow,” in International Conference on Computer-Aided
Design (ICCAD), Nov. 2016, pp. 1–8.

[5] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA trojans through detecting
and weakening of cryptographic primitives,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 8, pp. 1236–1249, Aug. 2015.

[6] A. Hastings, S. Jensen, J. Goeders, and B. Hutchings, “Using physical and functional
comparisons to assure 3rd-party IP for modern FPGAs,” in International Verification
and Security Workshop (IVSW), Jul. 2018, pp. 80–86.

[7] C. Wolf. (). Project IceStorm, Project IceStorm, [Online]. Available: http://www.
clifford.at/icestorm/ (visited on 06/23/2020).

[8] OneSpin. (). 360 EC-FPGA – OneSpin solutions. Library Catalog: www.onespin.com,
[Online]. Available: /products/360-ec-fpga (visited on 06/25/2020).

[9] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique for improving
hardware trojan detection and reducing trojan activation time,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 112–125, Jan. 2012.

[10] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification for hardware
trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 7, pp. 1148–1161, Jul. 2015.

[11] J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware trojan detection through chip-free
electromagnetic side-channel statistical analysis,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2939–2948, Oct. 2017.

[12] P. Kitsos, K. Stefanidis, and A. G. Voyiatzis, “TERO-based detection of hardware
trojans on FPGA implementation of the AES algorithm,” in Euromicro Conference
on Digital System Design (DSD), Aug. 2016, pp. 678–681.

[13] L. Pyrgas, F. Pirpilidis, A. Panayiotarou, and P. Kitsos, “Thermal sensor based
hardware trojan detection in FPGAs,” in Euromicro Conference on Digital System
Design (DSD), Aug. 2017, pp. 268–273.

[14] M. Lecomte, J. Fournier, and P. Maurine, “An on-chip technique to detect hardware
trojans and assist counterfeit identification,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 12, pp. 3317–3330, Dec. 2017.

[15] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff1, C. Papachristou, K. Roy,
and S. Bhunia, “Multiple-parameter side-channel analysis: A non-invasive hardware
trojan detection approach,” in International Symposium on Hardware-Oriented Security
and Trust (HOST), Jun. 2010, pp. 13–18.

[16] X. Zhang, A. Ferraiuolo, and M. Tehranipoor, “Detection of trojans using a com-
bined ring oscillator network and off-chip transient power analysis,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 9, no. 3, 25:1–25:20, Oct. 8, 2013.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

http://www.clifford.at/icestorm/
http://www.clifford.at/icestorm/
/products/360-ec-fpga

32 Eli Cahill, Brad Hutchings, and Jeffrey Goeders

[17] M. Ender, A. Moradi, and C. Paar, “The unpatchable silicon: A full break of the
bitstream encryption of xilinx 7-series FPGAs,” in USENIX Conference on Security
Symposium, 102, USA: USENIX Association, Aug. 12, 2020, pp. 1803–1819.

[18] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, “Recent advances in FPGA reverse
engineering,” Electronics, vol. 7, no. 10, p. 246, Oct. 2018.

[19] K. Matas, T. M. La, K. D. Pham, and D. Koch, “Power-hammering through glitch am-
plification – attacks and mitigation,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2020, pp. 65–69.

[20] B. L. Hutchings, J. Monson, D. Savory, and J. Keeley, “A power side-channel-based
digital to analog converter for xilinx FPGAs,” in Symposium on Field-Programmable
Gate Arrays (FPGA), Feb. 26, 2014, pp. 113–116.

[21] I. Hadžić, S. Udani, and J. M. Smith, “FPGA viruses,” in Conference on Field
Programmable Logic and Applications (FPL), P. Lysaght, J. Irvine, and R. Hartenstein,
Eds., 1999, pp. 291–300.

[22] T. Gaskin, H. Cook, W. Stirk, R. Lucas, J. Goeders, and B. Hutchings, “Using novel
configuration techniques for accelerated FPGA aging,” in 2020 30th International
Conference on Field-Programmable Logic and Applications (FPL), ISSN: 1946-1488,
Aug. 2020, pp. 169–175.

[23] https://github.com/SymbiFlow/prjxray, SymbiFlow/prjxray, Jun. 23, 2020.
[24] https://github.com/SymbiFlow/prjuray, SymbiFlow/prjuray, Jul. 21, 2020.
[25] D. R. E. Gnad, S. Rapp, J. Krautter, and M. B. Tahoori, “Checking for electrical level

security threats in bitstreams for multi-tenant FPGAs,” in International Conference
on Field-Programmable Technology (FPT), Dec. 2018, pp. 286–289.

[26] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FPGADefender:
Malicious self-oscillator scanning for xilinx UltraScale + FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 13, no. 3, 15:1–15:31, Sep. 1, 2020.

[27] K. Kępa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Hübner, and J. Becker, “Design
assurance strategy and toolset for partially reconfigurable FPGA systems,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 4, no. 1, 4:1–4:26, Dec. 1,
2010.

[28] C. Wolf, Yosys open SYnthesis suite.
[29] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” Journal of Symbolic

Computation, vol. 60, pp. 94–112, Jan. 1, 2014.
[30] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph isomorphism algorithm

for matching large graphs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 10, pp. 1367–1372, Oct. 2004.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: October 2021.

	Abstract
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Challenges and Strategies
	1.3 Organization

	2 Background
	2.1 Related Work
	2.2 Threat Model

	3 An Approach for Physical-Level IP Assurance
	3.1 Physical Assurance Process
	3.2 Challenges and Limitations of Physical Assurance
	3.3 Experiments with Physical Assurance
	3.4 Impact of Physical Assurance on QoR

	4 An Approach for Functional-Level IP Assurance
	4.1 Functional Assurance Process
	4.2 Challenges and Limitations of Functional Assurance
	4.3 Experiments with Functional Assurance
	4.4 Impact of Functional Assurance on QoR

	5 Bitstream-Level Design Assurance
	5.1 New Challenges Imposed by Bitstream-Level Assurance
	5.2 BYU FPGA Assurance Tools (bfasst) Framework
	5.3 Choosing an Effective CAD Flow for Equivalence Checking
	5.4 Detecting Circuit Modifications
	5.5 Impact of Bitstream-level Assurance on Runtime and QoR

	6 Comparing Different Assurance Flows
	7 Conclusion and Future Work

