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Abstract—Modern computing nodes often contain more than
just a CPU. With the advent of GPU accelerators and Xeon
Phi co-processors, there are many architectures available for
data processing. However, it is difficult to understand which
device is best for a given application. The issue of real-world
performance originates in the lack of quantifiable data and
method for analysis. This paper presents a novel, multi-tiered
framework that leverages Pareto optimization to objectively con-
struct the best processing node for a set of computational kernels.
By deconstructing the optimization process into three distinct
framework tiers (kernel, device, and system), the system designer
is able to understand how the various computational variables
impact device choices. We show how we leverage a combination
of metrics and benchmarking to form various Pareto sets. Moving
through the tiers, these Pareto sets are combined to identify the
various combinations that enable maximum performance.

I. INTRODUCTION

The last several years have seen rise to a new breed of
hardware accelerators in computational nodes. The rise of
GPU and many-core CPU accelerators potentially enables im-
proved system computational performance and higher energy-
efficency. Each architecture provides a range of advantages,
from the flexibility of a CPU to the massive parallelism of a
GPU. However, with all these choices for system construction,
it can be a daunting task to obtain the best performance. While
device vendors provide case studies of achieved performance,
it can be often difficult to understand how an application maps
to a given device.

In order to better compare devices, Williams et al. [1] and
Richardson et al. [2] present a methodology of comparing the-
oretical device performance. While these metrics create a fair
comparison for maximum performance, not all applications can
map well to a given architecture. Targeted benchmarking can
be used to better analyze each device; however, this approach is
slow and requires access to the device. Furthermore, common
synthetic and micro benchmarking rarely portrays how various
kernel-level benchmarks will function in a more complex
application. These assumptions of ideal execution common in
micro benchmarks leave significant room for speculation on
application-level and computational system-level performance.
To more effectively aid in analysis, this paper will present a
three-tiered analysis framework. Each tier of the framework
provides analysis at key abstraction points: kernel, device, and
system. By relating implementation performance, the kernel

level can be used to more clearly demonstrate individual
device architectures. The device level presents a series of
tradeoffs in order to select a device that best serves a set of
computational kernels. Lastly, the system level shows the high-
level tradeoffs on application performance. The framework
leverages a combination of metrics and benchmarking to form
various Pareto sets. Moving through the tiers, these Pareto sets
are combined to identify the various combinations that enable
maximum performance.

II. RELATED RESEARCH

The framework builds on previous work leveraging the
combination of Pareto-optimal sets. Pareto optimization is one
form of multi-objective optimization that forms a front of
points that are the optimal in respect to all constraints. In a
Pareto front, points may favor all or a subset of constraints,
such that it could potentially include the extremes of fully
satisfying one objective while completely failing another. [3]
The Pareto optimal form of analysis is well established in
device comparisons as outlined in Wulf et al. [4]. Note that
in [4] the authors make special point of the complexities of
system design. This approach is of particular interest as the
combination of these fronts is a fundamental aspect of the
proposed framework. Wettergren et al. [5] addresses this issue
directly in the tradeoff of Pareto fronts for undersea sensors
with respect to cost, type, and performance.

When a system introduces multiple constraints that must
work together, Wettergren et al. [5] outlines an approach to
methodically combine these Pareto fronts to achieve better
performance. A review [5] shows that while a Pareto front is
easily calculated for both long-range and short-range sensors,
it can vary greatly with the addition of just one parameter. This
analysis provides the foundation of the proposed framework,
evaluating how the addition of various devices can impact the
system Pareto front.

The driving factor used in this framework is benchmarking
data. However, benchmarking is a labor-intensive process. In
order to expand the applicability of this framework beyond
existing devices and kernels in our benchmarking database,
we will supplement benchmarking data with device metrics
analysis. Williams et al. [1] introduces a set of theoretical
metrics that can be used to objectively evaluate disparate
devices. These metrics are calculated with respect to clock
frequency, power, and the device architecture. One such metric978-1-4799-6233-4/14/$31.00 c© 2014 IEEE



TABLE I. CD OF DEVICES STUDIED [6]–[10]

Device Int8 Int16 Int32 SPFP DPFP
(GOPS) (GOPS) (GOPS) (GOPS) (GOPS)

Intel Xeon 998.40 499.20 249.60 332.80 166.4
E5-2670
Intel Xeon 1074.06 1074.06 1074.06 1074.06 568.62
Phi 5110P
NVIDIA 1762.18 1762.18 1762.18 1762.18 587.39
K20
NVIDIA 1967.60 1967.60 1967.60 1967.60 655.87
K20X
NVIDIA 2145.60 2145.60 2145.60 2145.60 715.20
K40

is Computational Density (CD) which is presented in giga-
operations per second (GOPS) and looks at device, not mathe-
matical, operations. For example, a fused multiply-accumulate
operation, commonly found on modern processors, is only 1
operation according to CD, while mathematically it is 2. CD
assumes that all data required for computation is available to
functional units. These metrics do not consider the time it takes
for memory to move data around the processor or to external
memory. [2] Table I contains the 8-bit integer (Int8), 16-bit
integer (Int16), 32-bit integer (Int32), single-precision floating
point (SPFP), and double-precision floating point (DPFP) CD
for the devices studied in this paper: Intel Xeon Phi 5110P,
Intel Xeon E5-2670, and NVIDIA K20, K20X, and K40.

These metrics provide a first-order analysis of the devices
of interest. For example, from Table I we see that the NVIDIA
K40 is the highest-performing device. While in many cases, the
K40 will outperform other devices, much of the K40’s GOPS
are a result of the 2880 CUDA cores. It, like the Intel Xeon Phi
5110P, suffers from a slower clock rate than the Intel Xeon E5-
2670 CPU. This difference in clock speed would suggest that
an application with limited parallelism could perform worse
on the NVIDIA K20X than the Intel X5-2670 CPU.

Building on the theoretical nature of CD, Richardson, et
al. [11] presents the concept of Realizable Utilization (RU).
Like CD, RU looks at computational operations; however,
it seeks to expand on CD by analyzing the actual amount
of computation performed by the device. Memory overhead
and other operations can detract from theoretical system per-
formance, making it extremely difficult to achieve the CD.
These real-world results create the RU score that seeks to
find what percentage of the device’s computational power is
actually used for a given application. Richardson et al. [11]
draws specific attention to how the RU score can vary with
a developer’s understanding of an application as well as
implementation. For example, a poor implementation, while
computationally correct, will likely result in less than optimal
performance.

III. APPROACH

In order to address the complexity involved in a computing
system, a clear scope must be established. Figure 1 presents
a concept diagram for processing constraints of the proposed
framework. In order to provide flexibility and effective compar-
isons, the framework is comprised of three tiers: System Con-
figuration, Device Performance, and Kernel Implementation.
The goal of each tier is to provide the system designer with
the ability to control constraints while better understanding
their impact on the system. As shown in Figure 1, each tier

consolidates the data from the tier beneath it. One issue in
presenting the final Pareto set is abstraction from device data.
By constructing a three-tiered framework, the various levels of
optimization can be more transparent. This approach enables
the fine-grained control required in designing a computing
system, while presenting the data in an organized manner:
each tier presents a logical break in order to enable system
analysis. In addition to building on lower tiers, the System
Configuration and Device Performance tiers also add mission
constraints into consideration.

A. Kernel Implementation

Code implementation and optimizations can have a large
impact on device performance. From basic C math library im-
plementations to advanced tuning libraries, such as the Fastest
Fourier Transform in the West (FFTW). Finding optimal im-
plementation performance is the foundation of the framework.
This analysis happens in the Kernel Implementation tier. Inputs
to the tier consists of a database of benchmarking data for a
sampling device. The Kernel Implementation tier outputs a
Pareto front of the optimal implementations for each kernel
of interest on each device studied as seen in the callout in
Figure 1. In order to compare various device implementations,
this tier looks at the Pareto front of benchmarking for multiple
implementations of a given computational kernel. The Pareto
front is maximized towards performance.

To illustrate this tier, consider the FFT implementation data
presented in Figure 2. Each point on graph represents the
average of 1000 trials at each dataset size. FFTW, a library
that tunes for the architecture, results in higher performance
than the Intel Math Kernel Library (MKL); however, it does
not use the same implementation at each point. In some
cases, serial FFTW code performs better than FFTW code
leveraging OpenMP parallelism. Therefore, the Pareto front
for this dataset would be a mix of serial and OpenMP parallel
FFTW FFT implementations over this range in dataset size.

Note that for this example (for simplicity), the Pareto
front is a special case that optimizes only one objective
(performance). In general, multiple objectives can be opti-
mized at the Kernel Implementation tier; e.g. non-recurring
engineering (NRE) cost and memory overhead. For example, a
high NRE investment could result in an innovative approach to
computational kernels as seen in Barhen et al. [12] with respect
to corner turns in FFTs on the IBM Cell. While currently the
Kernel Implementation tier is focused on performance, it can
be further expanded to account for development time in the
form of NRE cost. These constraints will enable a system
designer to consider both implementation and development
time while finding the optimal implementation for their needs.

B. Device Performance

Device parallelism and clock speed are two of the greatest
factors of CD performance. Most applications see performance
boosts in clock speed, while only parallel applications see a
boost as core count increases. However, there can be a limit
to the benefits of device parallelism. If you have a small
dataset, the overhead of communication can cause performance
to suffer. In addition, for a small dataset, you might not saturate
the device. For example, the NVIDIA K20X GPU has 2688



Fig. 1. Concept Diagram showcasing the three-tiered approach to optimization

CUDA cores. [9] Consider a square matrix multiply on a
dataset of only 256 elements. The limited parallelism and
overhead in moving the memory to the GPU might make it
less efficient that just using the parallelism of the CPU and
any SIMD units it might have. The Device Performance tier
seeks to address this issue by finding the optimal kernel at a
given data set size while also considering other applications
constraints such as power and reliability.

While the Kernel Implementation tier filters the out the
non-optimal implementations of each kernel, the Device Per-
formance tier seeks to figure out which kernel is best for a
given device. This analysis can be seen in the middle level of
Figure 1, building from the data (Pareto sets) from the Kernel
Implementation tier. The input to the Device Performance tier
is the Pareto set of implementation for each kernel and the
tier outputs the Pareto set of optimal performing kernels at
each dataset size. For example, consider the various Kernel
Implementation DPFP outputs for the NVIDIA K20X pre-
sented in Figure 3. In comparing the performance of these
kernels, it becomes evident that the K20X GPU shows its best
performance for 1D FFT, 2D FFT, and Matrix Multiplication.
In order to gain optimal efficiency from our system, it is key

for each device to run its optimal-performing kernel.

Again, although this example demonstrates optimization
based on only performance, this tier can be expanded to
include power, reliability and other constraints. For example,
by leveraging another metric from [1], Computational Den-
sity per Watt (CD/W) and any power data gathered during
benchmarking, this tier can enable a more in-depth analysis
on performance per Watt. Additionally, the CD/W metric can
be used in place of the Kernel Implementation tier data when
benchmarking data is not available. Should a level of fault-
tolerance be required, this tier can also serve as one point
to analyze the impacts of different software approaches. With
a performance estimate by either benchmarking or metric
analysis data, we can gain insight to added computational re-
dundancy or encoding of data. However, a hardware approach
to fault-tolerance, such as triple modular redundancy (TMR),
would be factored into the System Configuration.

C. System Configuration

As shown as child nodes of the System Configuration tier
in Figure 1, the inputs to the System Configuration tier are



Fig. 2. DPFP 1D FFT benchmarking results on Intel Xeon E5-2670

Fig. 3. DPFP FFT, Matrix Multiply, and SVD implementation Pareto fronts
on NVIDIA K20X GPU

both the optimal kernel implementations from the Kernel Im-
plementation tier and optimal kernel mappings from the Device
Performance tier. The System Configuration tier generates an
optimal computational system and kernel mappings. This top
tier is the most abstracted from implementation details and
gives a high-level overview of system construction. Much of
the data for this system-level Pareto front come from the
lower tiers. The System Configuration tier is also the most
flexible, allowing for data to be based on RU-extrapolated
device metrics, or the results of Device Performance tier. In
examining its function and goal, the System Configuration tier
is similar to the processing framework proposed by Wulf et
al. [4] with different optimization constraints.

In order to perform the analysis on the system, the System
Configuration tier must process the Pareto fronts generated
from the Device Performance and Kernel Implementation tiers.
Figure 4 is an example of the Pareto fronts generated from the
various kernel implementations presented in Figure 3. By com-
paring system execution goals to Pareto-fronts, the framework
can find the most computationally efficient configuration.

The System Configuration tier requires the data from

Fig. 4. NVIDIA K20X Device Performance teir Pareto fronts

all devices being considered. However, in many cases it is
impractical to have access to a full family of devices. Applying
the concept of RU presented by Richardson et al. [11], we
can extrapolate performance levels for additional devices. For
example, the NVIDIA Kepler GK110 architecture can exist
in several forms. [9] These can range from a single SMX
as found in the Tegra K1, to multiple SMX units found in
the K20, K20X, and K40 accelerators. Since the architectures
only computationally vary by degree of parallelism and clock
speed, we can extrapolate performance between devices. This
estimation is key in expanding the framework to the large set of
devices. Figure 5 shows the extrapolated Pareto fronts for two
other members of the NVIDIA Kepler family of accelerators,
K20 and K40. This graph is formed by calculating the RU of
each kernel at each size and applying that to the CD for the
other devices in the family. These projected values give much
more detail than just raw CD, but still contain some error. In
some cases, the difference is small, as seen in the smaller
dataset sizes presented in Figure 5 and error is negligible.
For larger dataset sizes, there is more variance between the
projected and estimated values. The multi-tiered approach to
this framework allows the designer to go back and analyze this
and decide the impact for their own system.

Sometimes an application requires a kernel with a dataset
size that is never on the Pareto front for a device. In these cases,
the System Configuration tier directly compares the outputs of
the Kernel Implementation tier and available system resources.
Figures 6 and 7 present DPFP SVD performance and DPFP
square matrix multiplication across all 3 devices of study,
respectively. For almost every dataset size in Figure 6, the Intel
Xeon E5-2670 performs the best. However, there is a point
where the NVIDIA K20X shows slightly better performance.
Depending on application requirements and device availability,
the System Configuration tier may map the SVD kernel to
either the Xeon CPU or K20X GPU. Figure 7 presents a
very different picture, showing that each device is the optimal
performer at different sizes. Like all the other graphs in this
paper, each point represents 1000 trials at the given size.
This average is key in ensuring the framework is computing
repeatable results.

In working with Pareto fronts, it is possible to have an
optimal combination of hardware accelerators for a device



Fig. 5. Projected NVIDIA Kepler family of Device Performance teir Pareto
fronts

Fig. 6. DPFP SVD kernel perofrmance on Intel Xeon E5-3670, Intel Xeon
Phi 5110P, and NVIDIA K20X.

without a host. This strict approach poses a unique challenge
and most accelerators require a host in order to operate. In
addition to finding the Pareto-optimal front of system devices,
this tier also ensures that a device capable of being a host CPU
is in the various system combinations.

IV. CASE STUDY

This multi-tiered framework relies on two main sets of data:
device metrics and benchmarking results. Device metrics are
easy to obtain and only require a datasheet or vendor tools. [2]
Benchmarking allows for much deeper analysis, but requires
a significant time investment. This case study demonstrates
how we leverage a combination of metrics and benchmarking
to form various Pareto sets. Moving through the tiers, these
Pareto sets are combined to identify the various combinations
that enable maximum performance.

In this case study, assume that we want to design a system
to perform signal processing in the frequency domain. Based
on project constraints, the candidate set of devices are Intel
Xeon E5-2670 CPUs, NVIDIA K20, K20X, or K40 GPUs, and
Intel Xeon Phi 5110P accelerators. The application does many
4096-element 2D FFTs and SVDs. The application also does

Fig. 7. DPFP Matrix Multiply kernel perofrmance on Intel Xeon E5-3670,
Intel Xeon Phi 5110P, and NVIDIA K20X.

1024-element square matrix multiplication. All these kernels
are pipelined and can execute in parallel. Given these inputs,
the result of the System Configuration tier Pareto front (of
the two top solutions) is shown in Tables II and III. These
tables provide the important values for the system designer:
devices, quantity, and kernel mappings. However, as shown
in the tables, much of the details of this implementation
are not visible at the System Configuration tier. However,
because of the multi-tier design of this framework, the system
designer can obtain these details by examining in a transparent
manner the results of the Device Performance and Kernel
Implementation tiers.

In this case, at first glance at Tables II and III the results
seem strange. GPUs are typically known for their matrix
multiplication performance. It is odd that neither output set
shows matrix multiplication on the GPU. To investigate this
counter intuitive result, the Device Performance tier enables
review of underlying kernel performance data. Figure 6 shows
that in most cases, SVD should be executed on the CPU;
however, this is one of the few cases that the NVIDIA K20X,
and by proxy the K40, showed better performance. The matrix
multiplication kernel is also of concern. GPU accelerators are
known for their matrix-multiplication performance; however
as you can see in Figure 7, Xeon Phi and Xeon E5-2670
devices outperforms the K20X on dataset sizes smaller than
1024 elements. Upon comparing these results, the output of the

TABLE II. TOP PERFORMING SYSTEM CONFIGURATION TIER OUTPUT

Device Kernel and
Dataset Size

Intel Xeon Matrix Multiply (1024)
E5-2670
NVIDIA 2D FFT (4096)
K40 SVD (4096)

TABLE III. 2ND HIGHEST PERFORMING SYSTEM CONFIGURATION
TIER OUTPUT

Device Kernel and
Dataset Size

Intel Xeon Matrix Multiply (1024)
E5-2670
NVIDIA 2D FFT (4096)
K20X SVD (4096)



System Configuration tier is clear. Even if the performance of
the K40 was evaluated, 109% of the K20X, the performance
still falls short of the Intel Xeon E5-2670. Furthermore,
these comparisons only consider execution time; they do not
consider the overhead of moving the data to and from the
accelerator, giving the CPU an even greater performance gap.

With multiple outputs and an understanding of each step of
the process outlined in Figure 1, the system designer can make
choices based on other factors. For example, if performance
is your only concern, the designer might consider the results
in Table II. However, there is a significant price difference
between NVIDIA GPUs, and giving up a bit of performance,
you might consider the more economical results in Table III.

This example shows the basic operation of the framework
with respect to device performance. The optimizations at each
tier present a single dimension of analysis. However, from
this example it is clear how power, development time (NRE),
device cost, size, memory overhead, and weight will fit into the
framework. The logical decomposition of analysis presented
with this example enables a system designer to look at the
impact various constraints have on the system. Furthermore,
this example shows the power of RU and CD in extrapolating
metric results to a family of devices, a key requirement in
effectively evaluating system configuration options.

V. CONCLUSIONS

Designing the optimal computational node is a balanc-
ing act between many constraints. It is often hard to truly
understand how a given application will map onto various
devices. This paper presented a novel framework that leverages
performance metrics and benchmarking data to achieve the
optimal system configuration with respect to computational
performance, and can be extended to size, NRE, reliability,
and power.

The example presented in this paper explores the workings
of the framework in the construction of a system. It begins with
looking at optimal-performing implementations. Leveraging
implementation performance data, the framework finds the
most efficient use of system devices. The framework then
brings the optimal sets into the scope of application goals,
presenting the highest performing kernel mappings and system
configurations.

Once an application is decomposed into key computational
kernels, this multi-tiered framework provides a method of
analysis that seeks to show quantitative results at all levels
of system configuration. The Kernel Implementation Tier pro-
vides the insight into optimal coding style and implementation
details for a given computational kernel. By combining and
evaluating performance of various kernels on a given device,
the Device Performance Tier identifies the strength of each pro-
cessor. This data, combined with the implementation results,
can improve design choices over metric data alone. Finally the
Device Performance and Kernel Implementation Tiers all work
to achieve optimal performance in the System Configuration
Tier.

Future work would include expanding computational ker-
nels and devices. While CD can fill in some gaps, expanded
benchmarking is key to gaining a more complete framework

at the node level. As a result of staying within the CD domain,
existing benchmarking data does not contain the time required
to copy memory from the host to accelerator. Future work
could leverage the memory metrics presented by Richardson
et al. [2] and integrate additional memory benchmarking.
Memory and network data could augment the mapping of
kernels by comparing if the performance gain outweighs the
added complexity and overhead of moving to a coprocessor or
GPU. This idea of data-transfer speed would also be instru-
mental in analyzing cluster configurations that leverage Gigabit
Ethernet, InfiniBand, PCIe, Thunderbolt, Fiber Channel or
other future interconnects. These additional considerations are
key in expanding the usability and effectiveness of the current
framework.
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